
INCREMENTAL AND PARALLEL MACHINE LEARNING

ALGORITHMS WITH AUTOMATED LEARNING RATE

ADJUSTMENTS

KAZUHIRO HISHINUMA AND HIDEAKI IIDUKA

Abstract. The existing machine learning algorithms for minimizing the con-

vex function over a closed convex set suffer from slow convergence because

their learning rates must be determined before running them. This paper pro-

poses two machine learning algorithms incorporating the line search method,

which automatically and algorithmically finds appropriate learning rates at

run-time. One algorithm is based on the incremental subgradient algorithm,

which sequentially and cyclically uses each of the parts of the objective func-

tion; the other is based on the parallel subgradient algorithm, which uses parts

independently in parallel. These algorithms can be applied to constrained non-

smooth convex optimization problems appearing in tasks of learning support

vector machines without adjusting the learning rates precisely. The proposed

line search method can determine learning rates to satisfy weaker conditions

than the ones used in the existing machine learning algorithms. This implies

that the two algorithms are generalizations of the existing incremental and

parallel subgradient algorithms for solving constrained nonsmooth convex op-

timization problems. We show that they generate sequences that converge to

a solution of the constrained nonsmooth convex optimization problem under

certain conditions. The main contribution of this paper is the provision of

three kinds of experiment showing that the two algorithms can solve concrete

experimental problems faster than the existing algorithms. First, we show that

the proposed algorithms have performance advantages over the existing ones

in solving a test problem. Second, we compare the proposed algorithms with

a different algorithm Pegasos, which is designed to learn with a support vec-

tor machine efficiently, in terms of prediction accuracy, value of the objective

function, and computational time. Finally, we use one of our algorithms to

train a multilayer neural network and discuss its applicability to deep learning.

Keywords: Support Vector Machines, Neural Networks, Nonsmooth Con-

vex Optimization, Incremental Subgradient Algorithm, Parallel Subgradient

Algorithm, Line Search Algorithm, Parallel Computing

1. Introduction

In this paper, we consider a technique to adjust the learning rates that appear

in subgradient algorithms for letting a generated sequence converge to an optimal

solution. The subgradient algorithm [4, Section 8.2] and its variants [13, 26, 33] have
1

2 K. HISHINUMA AND H. IIDUKA

been proposed as ways of solving the problem of minimizing a nonsmooth, convex

function over a closed convex set by iterative processes like the steepest descent

method for dealing with a smooth, convex function. These methods iterate the

current approximate solution by shifting it along a descent direction at that point

by a given degree called a learning rate. Although descent directions are decided on

the basis of the subgradient at each point, the learning rates are generally decided

for theoretical reasons for ensuring the convergence of the generated sequence. This

implies that subgradient algorithms can be run more efficiently if we can choose

more suitable learning rates concerning the objective function at each iteration.

Therefore, we should consider how to choose better learning rates while at the

same time maintaining the convergence properties.

We can reduce a lot of practical problems to ones solvable with subgradient algo-

rithms, that is, problems of minimizing a nonsmooth, convex function over a closed

convex set. One of the important applications is learning with a support vector

machine. Support vector machines are effective and popular classification learning

tools [22, 24, 31, 33]. The task of learning with a support vector machine is cast

as an empirical loss minimization with a penalty term for the norm of the classifier

that is being learned [33, Problem (1)]. If this loss objective function is convex,

we can handle this learning task by minimizing a nonsmooth, convex function over

a closed convex set. There are practical optimization algorithms for solving this

minimization problem, such as Pegasos [33], the incremental subgradient algorithm

[26], and the parallel subgradient algorithm [13]. These algorithms are variants of

the subgradient algorithm. They iteratively choose training examples and improve

their approximation by using a part of the objective function which corresponds to

the chosen examples. Not limited to machine learning, there exist many applica-

tions of minimizing a nonsmooth, convex function over a closed convex set, such

as signal recovery [6], bandwidth allocation [15], and beamforming [34]. Hence,

making the performance of these algorithms better would increase the efficiency of

these applications. Here, we attempt to do so by modifying the selection of the

learning rate.

Pegasos is a stochastic subgradient algorithm with a carefully chosen learning

rate that is designed for efficiently learning with a support vector machine [33].

This learning rate is determined from the regularization constant of the penalty

term. Hence, this algorithm can improve approximate solutions without having

to adjust their learning rates for each individual learning task. However, it is

specialized to learning with a support vector machine, and it cannot be applied to

other applications such as deep learning.

The sequential minimal optimization (SMO) algorithm [29] is also used for learn-

ing with a support vector machine. This algorithm can be applied to a quadratic

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 3

programming optimization problem appearing in learning with a dual form of a sup-

port vector machine and can solve it with a small amount of memory and quickly

[8, 29]. However, this algorithm deals with the dual form of the optimization prob-

lem; as such, the number of objective variables is likely to be large when many

instances are given to the learning task. Furthermore, the class of problem that

this algorithm can deal with is limited to quadratic programming. This implies

that it cannot be applied to general nonsmooth, convex programming.

In the field of mathematical optimization, the incremental and parallel subgra-

dient algorithms [13, 26] are useful for solving problems involving the minimization

of a nonsmooth, convex function over a closed convex set. The incremental sub-

gradient algorithm [26] minimizes the objective function by using alternately one

of the functions composing the summed objective, while the parallel subgradient

algorithm [13] minimizes it by using all of the composing functions independently.

Since the parallel subgradient algorithm treats each of the composing functions

independently, computations with respect to each function can be parallelized. It

is expected that parallelization shortens the computational time of learning. This

implies that the parallel subgradient algorithm can learn support vector machines

for larger datasets and/or in a shorter time compared with other algorithms.

A weak point of the incremental and parallel subgradient algorithms [13, 26] is

that they need to have suitably adjusted learning rates in order to run efficiently.

However, the suitable learning rate depends on various factors, such as the number

of the composing objective functions, number of dimensions, the shape of each

objective function and constraint set, and the selection of subgradients. This implies

that it is too difficult to choose a suitable learning rate before run-time. In contrast,

Pegasos [33] uses a concrete learning rate optimized for the task of learning with

a support vector machine and does not require this learning rate to be adjusted.

Therefore, it can be used more easily than the incremental and parallel subgradient

algorithms [13, 26].

In unconstrained minimization algorithms, line searches are used to select a

suitable learning rate [11, 41]. In particular, the Wolfe conditions [39] are learning

rate criteria for the line search. The Wolfe conditions are such that the learning rate

must satisfy a sufficient decrease condition and a curvature condition [27, Chapter

3]. The sufficient decrease condition is that the learning rate is acceptable only if

its function value is below a linear function with a negative slope. This condition

ensures that the algorithms update an approximation to a better one. However, it

is not enough to ensure that the algorithm makes reasonable progress because it

will do so for all sufficiently small learning rates. Therefore, a curvature condition

is invoked that generates a sequence further enough along the chosen direction.

4 K. HISHINUMA AND H. IIDUKA

Motivated by the idea of the line search, this paper proposes novel incremental

and parallel subgradient algorithms that can run efficiently without precise learning

rate adjustments. Reference [9] describes a gradient-projection algorithm with a

line search that minimizes the objective function. However, this algorithm assumes

that the objective function is differentiable. In addition, it is designed for single-

core computing; it is not useful in multi-core computing. Reference [2] proposes

the radar subgradient algorithm, which is a variant of the subgradient algorithm

including a procedure for finding an effective learning rate by using a line search

at each iteration. The line search method used in Reference [2] is inspired by the

cutting-plane method and works out a learning rate with the first-order information.

However, this algorithm deals with the whole objective function and cannot use

a part of the objective function at each iteration. This implies that it cannot

be used in applications that give information to the algorithm through a data

stream. In addition, the line search method used in Reference [2] may fail and

is distinct from the line search proposed in this paper. Hence, combining this

line search method with the one we propose may have a complementary effect

when the properties of the optimization problem are disadvantageous to one of

the algorithms. Reference [19] gives an algorithm for solving fixed point problems,

covering the constrained minimization problem discussed in this paper, with a line

search. This algorithm has a fast convergence property, though it decides only the

coefficient of the convex combination and is not designed for multi-core computing.

The algorithm in [12, 13, 17, 18, 26] requires a suitable learning rate in order to

converge efficiently. However, as we mentioned before, the learning rate is very

difficult to adjust.

In contrast to previous reports, this paper proposes incremental and parallel

subgradient algorithms with a line search to find better learning rates than the ones

used in the existing algorithms. To realize this proposal, we extend the concept

of the learning rate to a step-range, which is a set of candidates for the learning

rate. The line search procedure is given a step-range and chooses the most suitable

learning rate among it at run-time. Using a line search with a step-range has three

merits. First, the suitable learning rates chosen by the line search accelerate the

algorithms and make their solutions better. Section 5 shows that the proposed

algorithms gave better solutions than the one given by Pegasos [33] when they all

ran the same number of iterations. The second merit is that we do not need to

adjust the learning rate precisely. The existing incremental and parallel subgradient

algorithms [13, 26] cannot converge efficiently without appropriate adjustments to

their learning rates. This is their weak point in comparison with Pegasos [33]. In

contrast, the proposed algorithms only need step-ranges, i.e. rough candidates, to

converge efficiently, because the line search automatically chooses the learning rates

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 5

from among the step-range. Hence, they can be easily used to learn support vector

machines. Finally, the proposed algorithms can be applied to difficult problems

whose suitable learning rates cannot be chosen beforehand. Section 4 provides a

condition on the step-range compositions to ensure they converge to an optimizer of

the problem. Hence, even if a suitable learning rate cannot be specified beforehand,

the line search can algorithmically find one at run-time and make the algorithms

converge efficiently to an optimizer. We show that our algorithms converge to

an optimizer to the problem when the step-range is diminishing. In addition, if

the step-range is a singleton set, they coincide with the existing incremental and

parallel subgradient algorithms [13, 26]. Hence, the step-range is a generalization

of the learning rates used in the existing algorithms.

We compared the proposed algorithms with Pegasos [33] and the SMO algorithm

on various datasets [10, 21, 23] for binary and multiclass classification. The results

of the comparison demonstrated that the proposed algorithms perform better than

the existing ones in terms of the value of the objective function for learning with

a support vector machine and in terms of computational time. In particular, the

parallel subgradient algorithm dramatically reduced the computational times of the

learning tasks.

Stochastic subgradient algorithms are useful for learning with a multilayer neural

network habitually [5]. The incremental subgradient algorithm is a specialization of

the stochastic subgradient algorithm. Therefore, we can use one of our algorithms,

a variant of the incremental subgradient algorithm, to train a multilayer neural

network. We compared it with two other variants of the incremental subgradient

algorithm. The results show that our algorithm can minimize the objective function

of the trained neural network more than the others. This ability implies that it is

also useful for training not only SVMs but also neural networks, including ones for

deep learning.

This paper is organized as follows. Section 2 gives the mathematical prelimi-

naries and mathematical formulation of the main problem. Section 3 presents our

algorithms. We also show the fundamental properties of these algorithms that are

used to prove the main theorems. Section 4 presents convergence analyses. Sec-

tion 5 describes numerical comparisons of the proposed algorithms with the existing

ones in Reference [13, 26, 33] using concrete machine learning datasets [10, 21, 23].

In this section, we also describe how to use one of the proposed algorithms to train

a multilayer neural network for recognizing handwritten digits. Section 6 concludes

this paper.

6 K. HISHINUMA AND H. IIDUKA

2. Mathematical Preliminaries

Let RN be an N -dimensional Euclidean space with the standard Euclidean inner

product ⟨·, ·⟩ : RN × RN → R and its induced norm defined by ∥x∥ := ⟨x, x⟩ 12 . We

define the notation N := {1, 2, . . .} as the set of all natural numbers. Let xn → x

denote that the sequence {xn} ⊂ RN converges to a point x ∈ RN .

A subgradient g of a convex function f : RN → R at a point x ∈ RN is defined by

g ∈ RN such that f(x)+⟨y−x, g⟩ ≤ f(y) for all y ∈ RN . The set of all subgradients

at a point x ∈ RN is denoted as ∂f(x) [32], [35, Section 7.3].

The metric projection onto a nonempty, closed convex set C ⊂ RN is denoted

by PC : RN → C and defined by ∥x − PC(x)∥ = infy∈C ∥x − y∥ [1, Section 4.2,

Chapter 28]. PC satisfies the nonexpansivity condition [35, Subchapter 5.2]; i.e.

∥PC(x)− PC(y)∥ ≤ ∥x− y∥ for all x, y ∈ RN .

2.1. Main Problem. We will consider the following optimization problem [13, 26]:

let fi : RN → [0,∞) (i = 1, 2, . . . ,K) be convex, continuous functions and let C

be a nonempty, closed convex subset of RN . Then,

minimize f(x) :=

K∑
i=1

fi(x),

Subject to x ∈ C.

(1)

Let us discuss Problem (1) in the situation that a closed convex subset C of anN -

dimensional Euclidean space RN is simple in the sense that PC can be computed

within a finite number of arithmetic operations. Examples of a simple, closed

convex set C are a closed ball, a half-space, and the intersection of two half-spaces

[1, Examples 3.16 and 3.21, and Proposition 28.19].

The task of learning with a support vector machine can be cast as Problem

(1) [33, Problem (1)]. Furthermore, there are a lot of applications not limited to

learning with a support vector machine when f is nonsmooth but convex on RN

and when C ⊂ RN is simple. For example, minimizing the total variation of a signal

over a convex set and Tykhonov-like problems with L1-norms [7, I. Introduction]

are able to be handled as Problem (1). Application of Problem (1) to learning with

a support vector machine will be described in Section 5.

The following assumptions are made throughout this paper.

Assumption 1 (Subgradient Boundedness[26, Assumption 2.1]). For all i = 1, 2, . . . ,K,

there exists Mi ∈ (0,∞) such that

∥g∥ ≤Mi (x ∈ C; g ∈ ∂fi(x)).

We define a constant M :=
∑K

i=1 Mi.

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 7

Assumption 2 (Existence of Optimal Solution[26, Proposition 2.4]). argminx∈C f(x) ̸=
∅.

3. Proposed Algorithms and their Fundamental Properties

3.1. Incremental Subgradient Algorithm. This subsection presents the incre-

mental subgradient algorithm, Algorithm 1, for solving Problem (1). Let us com-

Algorithm 1 Incremental Subgradient Algorithm

Require: ∀n ∈ N, [λn, λn] ⊂ (0,∞).
1: n← 1, x1 ∈ C.
2: loop
3: yn,0 := xn.
4: for i = 1, 2, . . . ,K do ▷ In sequence
5: gn,i ∈ ∂fi(yn,i−1).

6: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
7: yn,i := PC(yn,i−1 − λn,ign,i).
8: end for
9: xn+1 := yn,K .

10: n← n+ 1.
11: end loop

pare Algorithm 1 with the existing one[26]. The difference is Step 6 of Algorithm 1.

The learning rate λn of the existing algorithm must be decided before the algo-

rithm runs. However, Algorithm 1 only needs the step-range [λn, λn]. A learning

rate within the range used by Algorithm 1 can be automatically determined at

run-time. Algorithm 1 coincides with the incremental subgradient algorithm when

the given step-range [λn, λn] is a singleton set, i.e. λn := λn := λn, which means

that it is a generalization of the algorithm in [26]. In this case, Algorithm 1 chooses

only one learning rate λn from the singleton step-range [λn, λn] = {λn}.
This difference has three merits. First, the suitably chosen learning rates in

Step 6 accelerate convergence and make the solutions more accurate. Second, Al-

gorithm 1 does not require the learning rate to be precisely adjusted in order for it

to converge efficiently, unlike the existing incremental subgradient algorithm [26].

Instead, Algorithm 1 only needs a rough step-range as the line search automatically

chooses learning rates from among this range. Hence, it can easily be used to learn

support vector machines. Finally, Algorithm 1 can be applied to problems in which

a suitable learning rate cannot be chosen beforehand. Hence, even if the suitable

learning rate cannot be specified, line search can algorithmically find this learning

rate and make proposed algorithms converge efficiently to an optimizer.

Algorithm 1 has the following property, which is used for proving the main

theorem in Section 4. We omit the proof of this lemma here and refer the reader

to [14, Lemma ??alg:ngism].

8 K. HISHINUMA AND H. IIDUKA

Lemma 1 (Fundamental Properties of Algorithm 1 [14, Lemma ??alg:ngism]). Let

{xn} be a sequence generated by Algorithm 1. Then, for all y ∈ C and for all n ∈ N,
the following inequality holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the nonexpansivity of PC , the

definition of subgradients, and Assumption 1, we have

∥xn+1 − y∥2 = ∥PC(yn,K−1 − λn,Kgn,K)− PC(y)∥2

≤ ∥yn,K−1 − y − λn,Kgn,K∥2

= ∥yn,K−1 − y∥2 − 2λn,K⟨yn,K−1 − y, gn,K⟩+ λ2
n,K∥gn,K∥2

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i⟨yn,i−1 − y, gn,i⟩+
K∑
i=1

λ2
n,i∥gn,i∥2

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(yn,i−1)− fi(y)) + λ
2

n

K∑
i=1

M2
i ,

where the second equation comes from ∥x−y∥2 = ∥x∥2−2⟨x, y⟩+∥y∥2 (x, y ∈ RN).

Using the definition of subgradients and the Cauchy-Schwarz inequality, we have

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y))− 2

K∑
i=1

λn,i(fi(yn,i−1)− fi(xn)) + λ
2

n

K∑
i=1

M2
i .

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λn

K∑
i=1

Mi∥yn,i−1 − xn∥+ λ
2

n

K∑
i=1

M2
i .

Further, the nonexpansivity of PC and the triangle inequality mean that, for all

i = 2, 3, . . . ,K,

∥yn,i−1 − xn∥ = ∥PC(yn,i−2 − λn,i−1gn,i−1)− PC(xn)∥

≤ ∥yn,i−2 − xn − λn,i−1gn,i−1∥

≤ ∥yn,i−2 − xn∥+ λn,i−1∥gn,i−1∥

≤ ∥yn,i−2 − xn∥+ λnMi−1

≤ λn

i−1∑
j=1

Mj .

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 9

From above inequality and the fact that ∥yn,0−xn∥ = ∥xn−xn∥ = 0, we find that

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λ
2

n

K∑
i=1

Mi

i−1∑
j=1

Mj + λ
2

n

K∑
i=1

M2
i

= ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

n

(
K∑
i=1

Mi

)2

= ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

This completes the proof. □ □

3.2. Parallel Subgradient Algorithm. Algorithm 2 below is an extension of

the parallel subgradient algorithm[13]. The difference between Algorithm 2 and

Algorithm 2 Parallel Subgradient Algorithm

Require: ∀n ∈ N, [λn, λn] ⊂ (0,∞).
1: n← 1, x1 ∈ C.
2: loop
3: for all i ∈ {1, 2, . . . ,K} do ▷ Independently
4: gn,i ∈ ∂fi(xn).

5: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
6: yn,i := PC(xn − λn,ign,i).
7: end for
8: xn+1 := 1

K

∑K
i=1 yn,i.

9: n← n+ 1.
10: end loop

the algorithm in [13] is Step 5 of Algorithm 2. The existing algorithm uses a given

learning rate λn, while Algorithm 2 chooses a learning rate λn from the step-range

[λn, λn] at run-time.

The common feature of Algorithm 2 and the parallel subgradient algorithm [13]

is loop independence (Step 3). This loop structure is not influenced by the com-

putation order. Hence, each iteration of this loop can be computed in parallel.

Therefore, parallelization using multi-core processing should be able to reduce the

time needed for computing this loop procedure. Generally speaking, the main loop

of Algorithm 2 is computationally heavier than the other subgradient algorithms

including Pegasos, because it appends the learning rate selection (line search) pro-

cedure to the existing one. However, parallelization alleviates this effect of the line

search procedure (This is shown in Section 5).

Next, we have the following lemma.

Lemma 2 (Fundamental Properties of Algorithm 2 [14, Lemma ??lem:ngpsm]).

Let {xn} be a sequence generated by Algorithm 2. Then, for all y ∈ C and for all

10 K. HISHINUMA AND H. IIDUKA

n ∈ N, the following inequality holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the convexity of ∥ · ∥2, the nonex-

pansivity of PC , the definition of subgradients, and Assumption 1, we have

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

K∑
i=1

PC(xn − λn,ign,i)− PC(y)

∥∥∥∥∥
2

≤ 1

K

K∑
i=1

∥xn − y − λn,ign,i∥2

=
1

K

K∑
i=1

(∥xn − y∥2 − 2λn,i⟨xn − y, gn,i⟩+ λ2
n,i∥gn,i∥2)

≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2.

This completes the proof. □ □

3.3. Line Search Algorithms. Step 6 of Algorithm 1 and Step 5 of Algorithm 2

are implemented as line searches. The algorithms decide an efficient learning rate

λn in [λn, λn] by using yn,i−1 in Algorithm 1 (or xn in Algorithm 2), gn,i, fi and

other accessible information on i. This is the principal idea of this paper. We

can use any algorithm that satisfies the above condition. The following are such

examples.

The simplest line search is the discrete argmin, as shown in Algorithm 3. First,

Algorithm 3 Discrete Argmin Line Search Algorithm

1: xp :=

{
yn,i−1 (Algorithm 1),

xn (Algorithm 2)
.

2: λn,i ← L1λn + (1− L1)λn.
3: for Lt ∈ {L2, L3, . . . , Lk} do
4: t← Ltλn + (1− Lt)λn.
5: if fi(PC(xp − tgn,i)) < fi(PC(xp − λn,ign,i)) then
6: λn,i ← t
7: end if
8: end for

we set the ratio candidates {L1, L2, . . . , Lk} ⊂ [0, 1]. In each iteration, we compute

all of the candidate objectives for the learning rate λn,i = Ltλn +(1−Lt)λn (t =

1, 2, . . . , k) and take the best one.

Algorithm 4 is a line search based on the Wolfe conditions. It finds a learning

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 11

Algorithm 4 Logarithmic-Interval Armijo Line Search

1: xp :=

{
yn,i−1 (Algorithm 1),

xn (Algorithm 2)
.

2: for IR = 1, 1/a, 1/a2, . . . , 1/ak do
3: λn,i ← IRλn + (1− IR)λn.
4: if fi(PC(xp − λn,ign,i)) ≤ fi(xp)− c1⟨xp − PC(xp − λn,ign,i), gn,i⟩ then
5: stop (success).
6: end if
7: end for
8: stop (failed).

rate that satisfies the sufficient decrease condition with logarithmic grids. Once this

learning rate has been found, the algorithm stops and the learning rate it found is

used in the caller algorithm. However, this algorithm may fail (Step 8). To avoid

such a failure, we can make the caller algorithm use λn. This is the largest learning

rate of the candidates for making an effective update of the solution. The results of

the experiments described in Section 5 demonstrate effectiveness of this algorithm1.

4. Convergence Analysis

4.1. Sequence Convergence Theorem. Here, we first show that the limit infe-

riors of {f(xn)} generated by Algorithms 1 and 2 are equal to the optimal value

of the objective function f . Next, we show that the generated sequence {xn} con-
verges to a solution of Problem (1). The following assumption is used to show

convergence of Algorithms 1 and 2.

Assumption 3 (Step-Range Compositions).

∞∑
n=1

λn =∞,

∞∑
n=1

λ
2

n <∞, lim
n→∞

λn

λn

= 1,
∞∑

n=1

(λn − λn) <∞.

The following lemma states that some subsequence of the objective function

value of the generated sequence converges to the optimal value. This lemma is used

to prove the main theorem described next.

Lemma 3 (Evaluation of the limit Inferior [14, Lemma ??lem:liminf]). For a se-

quence {xn}, if there exists α ∈ (0,∞) such that, for all y ∈ C and for all n ∈ N,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2

nM
2,(2)

1In this case, i.e., when we use Algorithm 1 or Algorithm 2 with Algorithm 4, we have to give a
step-range {λn, λn}, a constant c1 appearing in the Armijo condition, a common ratio a and the

number of trials k of Algorithm 4 as hyperparameters.

12 K. HISHINUMA AND H. IIDUKA

then,

lim
n→∞

f(xn) = min
x∈C

f(x).

Proof. Assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= minx∈C f(x). Then, either

limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) or minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)

holds. First, we assume limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x). Recall

{xn} ⊂ C and the definition f(x) :=
∑K

i=1 fi(x) in the main problem (1). The

property of the limit inferior and [36, Exercise 4.1.31] ensure that

min
x∈C

f(x) ≤ lim
n→∞

f(xn)

= lim
n→∞

λn

λn

K∑
i=1

fi(xn)

Further, from the positivity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i and

the assumption that limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) lead to

min
x∈C

f(x) ≤ lim
n→∞

K∑
i=1

λn

λn

fi(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< min
x∈C

f(x).

This is a contradiction. Next, we assume minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)

and let ŷ ∈ argminx∈C f(x). Then, there exists ε ∈ (0,∞) such that

f(ŷ) + 2ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn).

From the definition of the limit inferior, there exists n0 ∈ N such that, for all n ∈ N,
if n0 ≤ n then

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε <

K∑
i=1

λn,i

λn

fi(xn).

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 13

Now, λn,i/λn ≤ 1 and 0 ≤ fi(ŷ) (i = 1, 2, . . . ,K) hold. Therefore, for all n ∈ N,
if n0 ≤ n then

ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε− f(ŷ)

<

K∑
i=1

λn,i

λn

fi(xn)−
K∑
i=1

fi(ŷ)

≤
K∑
i=1

λn,i

λn

(fi(xn)− fi(ŷ)).

From inequality (2), for all n ∈ N, if n0 ≤ n, we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2

nM
2

≤ ∥xn − ŷ∥2 − 2αλnε+ λ
2

nM
2

= ∥xn − ŷ∥2 − λn(2αε− λnM
2).

From Assumption 3, n1 ∈ N exists such that n0 ≤ n1 and, for all n ∈ N, if n1 ≤ n,

λn ≤ αε/M2. Hence, if n1 ≤ n, we have

0 ≤ ∥xn+1 − ŷ∥2

≤ ∥xn − ŷ∥2 − αελn

≤ ∥xn1
− ŷ∥2 − αε

n∑
k=n1

λk.

for all n ∈ N. From Assumption 3, the right side diverges negatively, which is a

contradiction. Overall, we have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) = min
x∈C

f(x).

Next, let us assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= limn→∞ f(xn). Now,

λn,i/λn ≤ 1 and 0 ≤ fi(xn) (i = 1, 2, . . . , N) hold for all n ∈ N. Therefore, we

have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) ≤ lim
n→∞

f(xn).

14 K. HISHINUMA AND H. IIDUKA

Hence, from the positivity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i, and [36,

Exercise 4.1.31], we have

lim
n→∞

f(xn) = lim
n→∞

λn

λn

f(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< lim
n→∞

f(xn).

However, this is a contradiction. This completes the proof. □ □

The following is the main theorem of this paper.

Theorem 1 (Main Theorem). The sequence {xn} generated by Algorithm 1 or 2

converges to an optimal solution to the main problem (1).

Proof. Let ŷ ∈ argminx∈C f(x) and fix n ∈ N. From Lemmas 1 and 2, there exists

α ∈ (0,∞) such that

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2

nM
2.

From 0 ≤ fi(ŷ), fi(xn) (i = 1, 2, . . . ,K), we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2αλn

K∑
i=1

fi(xn) + 2αλn

K∑
i=1

fi(ŷ) + λ
2

nM
2

= ∥xn − ŷ∥2 − 2αλn

K∑
i=1

(fi(xn)− fi(ŷ)) + 2α(λn − λn)

K∑
i=1

fi(ŷ) + λ
2

nM
2

≤ ∥xn − ŷ∥2 + 2αf(ŷ)(λn − λn) + λ
2

nM
2(3)

≤ ∥x1 − ŷ∥2 + 2αf(ŷ)

n∑
i=1

(λi − λi) +M2
n∑

i=1

λ
2

i .

From Assumption 3, the left side of the above inequality is bounded. Hence, {xn}
is bounded. From Lemma 3, a subsequence {xni} ⊂ {xn} and u ∈ argminx∈C f(x)

exist such that xni → u. Using [3, Lemma 1.7.(ii)] with inequality (3), this implies

xn → u. This completes the proof. □ □

4.2. Convergence Rates. To show the convergence rates of Algorithms 1 and

2, we assume λn := λn := 1/n for all n ∈ N. We also assume the existence of

µ ∈ (0,∞) such that

f(x)− f(ŷ) ≥ µ∥x− ŷ∥2
(
x ∈ C, ŷ ∈ argmin

u∈C
f(u)

)
.(4)

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 15

The strong convexity of f implies Condition (4)[25, Inequality (16)]. First, We

give the following lemma, which is required to show the convergence rates of Algo-

rithms 1 and 2.

Lemma 4. ([25, Lemma 2.1], [30, Lemma 4]) Let {un} ⊂ [0,∞) be such that

un+1 ≤
(
1− p

n

)
un +

d

n2
(n ∈ N)

for some p, d ∈ (0,∞). Then
un = O(1

np) (p < 1),

un = O(logn
n) (p = 1),

un ≤ d
n(p−1) + o(1n) (p > 1).

Next, we prove two propositions that show the convergence rates of Algorithms 1

and 2.

Proposition 1 (Convergence Rate of Algorithm 1). Let {xn} be a sequence gen-

erated by Algorithm 1 and ŷ ∈ argminy∈C f(y). Then, the following hold:
∥xn+1 − ŷ∥ = O(1

n2µ) (2µ < 1),

∥xn+1 − ŷ∥ = O(logn
n) (2µ = 1),

∥xn+1 − ŷ∥ ≤ M2

n(2µ−1) + o(1n) (2µ > 1).

Proof. From Lemma 1 and inequality (4), we have

∥xn+1 − ŷ∥2 ≤
(
1− 2µ

n

)
∥xn − ŷ∥2 + M2

n2
.

for all n ∈ N. Lemma 4 with p := 2µ, d := M2 completes the proof. □ □

This result implies that Algorithm 1 is in the same class of convergence efficiency

as the incremental subgradient algorithm[25, Proposition 2.8].

Proposition 2 (Convergence Rate of Algorithm 2). Let {xn} be a sequence gen-

erated by Algorithm 2 and ŷ ∈ argminy∈C f(y). Then, the following hold:
∥xn+1 − ŷ∥ = O(1

n2µ/K)
(
µ < K

2

)
,

∥xn+1 − ŷ∥ = O(logn
n)

(
µ = K

2

)
,

∥xn+1 − ŷ∥ ≤ M2

n(2µ/K−1) + o(1n)
(
µ > K

2

)
.

Proof. From Lemma 2 and inequality (4), we have

∥xn+1 − y∥2 ≤
(
1− 2µ

nK

)
∥xn − ŷ∥2 + M2

n2
.

for all n ∈ N. Lemma 4 with p := 2µ/K, d := M2 completes the proof. □ □

16 K. HISHINUMA AND H. IIDUKA

To above analyses assumed λn = λn. However, Algorithms 1 and 2 can use

different values of λn and λn. This implies that Algorithms 1 and 2 may converge

faster than theoretical rates given here.

5. Experiments

In this section, we present the results of experiments evaluating our algorithms

and comparing them with the existing algorithms. For our experiments, we used

a MacPro (Late 2013) computer with a 3GHz 8-Core Intel Xeon E5 CPU, 32GB

1866MHz DDR3 memory, and 500GB flash storage. The operating system was

MacOS Sierra (version 10.12.6). The experimental codes were written in Python

3.6 and ran on the CPython implementation.

5.1. Validation of Convergence Properties with a Simple Problem. A con-

crete test problem with a closed-form solution is a good way to evaluate the per-

formance of algorithms in detail [37, 38]. Here, we used the existing and proposed

algorithms to solve a simple problem. The goals were to compare their performances

under equal conditions, to use the best parameters for each algorithm calculated

from the theoretical analyses, and to evaluate these algorithms with the detailed

indicators such as the distance between an acquired solution and the actual solution

of the test problem. The test problem is as follows.

Problem 1 (Test problem). Let fi(x) := (i + 1)x2
i (x ∈ RN ; i = 1, 2, . . . , n),

c ∈ RN , and r ∈ R. Then, we would like to

minimize f(x) :=

K∑
i=1

fi(x)

subject to ∥x− c∥ ≤ r and xi = 0 (i = 3, 4, . . . , N).

This problem is obviously an instance of Problem 1. Of course, the continuity

of the objective function and the boundedness of the constraint ensure the above

problem satisfies Assumption 1. We set c := (2, 1, 0, . . . , 0)⊤ and r := 1. The

optimal solution is accordingly x⋆ = ((2− /
√
2)/2, (2−

√
2)/2, 0, . . . , 0).

We set the number of dimensions to N := 16, i.e., equal to the number of logical

cores of the experimental computer. We gave x1 := (2, 1, 0, . . . , 0)⊤, the center

of the feasible set, as an initial point. We selected the incremental and parallel

subgradient algorithms for comparison. These algorithms use a priori given learning

rates; that is, they coincide with Algorithms 1, 2 with the settings λn = λn = λn ∈
(0,∞) (n ∈ N). In this comparison, we gave learning rates of λn := 1/(nN2), which

are appropriately chosen based on the following proposition related to the existing

algorithms.

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 17

Proposition 3 ([16, Lemma 2.1], [40, Lemma 3.1]). Suppose that f : RN → R is

c-strongly convex and differentiable, ∇f : RN → RN is L-Lipschitz continuous, and

µ ∈ (0, 2c/L2). Define T : RN → RN by T (x) := x − µ∇f(x) (x ∈ RN). Then, T

is a contractive mapping.

We set λn := 100/((n + 10000)N2), λn := 100/(nN2) for each n ∈ N as the

parameters of the proposed algorithms. This step-range contains the learning rates

of the existing algorithms. We used Algorithm 4 with the parameters c1 := 0.99,

a := 0.5, and k := 7. We limited the iterations to 1,000 and evaluated the following

indicators:

• Fn: value of the objective function, i.e., Fn :=
∑n

i=1 fi(xn),

• Dn: distance to the optimal solution, i.e., Dn := ∥x⋆ − xn∥,
• Tn: running time of the algorithm.

The behaviors of {Fn} and {Dn} in each iteration n are shown in Figure 1. The

(a) Behavior of Fn in each iteration n (b) Behavior of Dn in each iteration n

Figure 1. Numerical comparison of running the existing and pro-
posed algorithms on the test problem 1

result of Algorithm 1 dropped to the optimal dramatically in terms of both {Fn} and
{Dn} within the first fifty iterations. The graphs of the other algorithms decreased

similarly, but those of the algorithms with the line search decreased faster. Table 1

lists the running times of the existing and proposed algorithms for 1,000 iterations.

Compared with the existing algorithms, the proposed algorithms needed a bit more

time for running. However, they dramatically reduced the value of the objective

function. Therefore, they converged faster that the existing algorithms.

5.2. Comparison of the existing and proposed algorithms in the task

of learning with support vector machines. This subsection compares Algo-

rithms 1 and 2 with Pegasos [33]. To evaluate their performance, we applied them

to the following learning task.

18 K. HISHINUMA AND H. IIDUKA

Table 1. Running time of each algorithm in solving the test problem 1

Algorithm Running time (T1000 [s])

Incremental subgradient algorithm 0.34341614
Algorithm 1 0.97763861
Parallel subgradient algorithm 0.11232432
Algorithm 2 0.24512658

Problem 2 (The task of learning with a support vector machine [33]). Let C

be a positive real number. Given a training set {(xi, yi)}, where xi ∈ RN (i =

1, 2, . . . ,K) and yi ∈ {1,−1} (i = 1, 2, . . . ,K), we would like to

minimize f(w) :=
1

C
∥w∥2 + 1

K

K∑
i=1

max{0, 1− yi ⟨w, xi⟩}

subject to w ∈ X := {w : ∥w∥ ≤
√
C}.

This optimization problem is introduced in [33] for learning with a support vector

machine. The first term of the objective function is a penalty term that depends

on the constraint set, and the second term is a loss function. The loss function

returns higher values if the learner w can not classify an instance (xi, yi) correctly.

The norm value of the learner w does not affect the classification results due to

the immutability of the signs of the decision function ⟨w, xi⟩. Therefore, we can

limit this value to a constant C. Now, let fi(w) := ((1/C) ∥w∥2 + max{0, 1 −
yi ⟨w, xi⟩})/K. Then, f =

∑K
i=1 fi holds and Problem 2 can be handled as an

instance of Problem (1).

We used the machine learning datasets shown in Table 2. The “australian”

Table 2. Datasets used in our experiments

Name #Instances #Attributes Missing Values Attribute Characteristics

Iris (binary class) 100 4 No Real
Iris (multiclass) 150 4 No Real
Australian 590 14 No Real
Horse-colic 368 27 Yes Categorical, Integer, Real
Breast-cancer-wisconsin 699 10 Yes Integer
Census-income 48842 14 Yes Categorical, Integer
Internet-advertisements 3279 1558 Yes Categorical, Integer, Real
MNIST 14780 784 No Integer
RANDOM1 20 100 No Real
RANDOM2 200 1000 No Real

data set is from LIBSVM Data [23]. The “MNIST” data set contains handwritten

“0” and “1” digits and is provided by [21]. The “RANDOM1” and “RANDOM2”

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 19

datasets were generated using the sklearn.datasets.make classification func-

tion with a fixed random state. The others are from the UCI Machine Learning

Repository [10]. The number of classes of “iris (multiclass)” is three, and the others

are binary classification datasets.

Missing values were complemented by using the sklearn.impute.SimpleImputer

class. Categorical attributes were binarized using the sklearn.preprocessing.OneHotEncoder

class. Each data set was scaled using the sklearn.preprocessing.StandardScaler

class. These preprocessing methods and classes are from the scikit-learn [28] pack-

age for Python3.

The Pegasos algorithm used for this comparison is listed as Algorithm 5.

Algorithm 5 Pegasos [33, Fig. 1]

1: n← 1, w1 ∈ X.
2: loop
3: in ∈ {1, 2, . . . ,K}. ▷ Chosen uniformly at random
4: g ∈ ∂fin(wn).
5: λn := C/n.
6: wn+1 ← PX(wn − λngn).
7: n← n+ 1.
8: end loop

We set C := 10−1 and gave λn := 10−1/(n + 108) to Algorithms 1 and 2. We

used Algorithm 4 with c1 := 0.99 for the line search step in Algorithms 1 and 2.

The main loops in Algorithms 1 and 5 were iterated 100K times, while the main

loop in Algorithm 2 was iterated 100 times. This setting means that the algorithms

could refer to each of the functions fi (i = 1, 2, . . . ,K) 1000 times.

We added scores of the SMO algorithm, one of the major algorithms for learning

with a support vector machine, to the experimental results for each dataset. We

used the implementation of the SMO algorithm in Python 2 for calculating these

scores.

First, let us look at the results for the iris (binary class) data set. Table 3 lists the

computational times for learning, the classification scores on the training and test

sets, and the values of the objective function. We used the sklearn.model selection.train test split

method provided by the scikit-learn package [28] to split the dataset into training

and test sets. The number of instances in the training set was 30 and the number

of instances in the test set was 70. The results indicate that Algorithm 2 performed

better than Pegasos and Algorithm 1 in terms of computational time and value of

the objective function. In addition, Algorithm 1 worked out a better approximation

than Pegasos did in terms of the objective function. Hence, Algorithms 1 and 2

2https://github.com/LasseRegin/SVM-w-SMO

20 K. HISHINUMA AND H. IIDUKA

Table 3. Iris (binary class)

Algorithm Time [sec] Score (Training) Score (Test) Objective

Pegasos 0.12741225 1.00000000 1.00000000 0.95967555
Algorithm 1 0.28701049 1.00000000 1.00000000 0.94237229
Algorithm 2 0.03734168 1.00000000 1.00000000 0.91133305

SMO Algorithm 0.00515115 1.00000000 1.00000000 –

Table 4. Iris (multiclass; Algorithms 1, 2, and 5 are used as
solvers for the subproblem appearing in this multiclass classifica-
tion experiment.)

Algorithm Time [sec] Score (Training) Score (Test) Avg. Objective

Pegasos 0.59731907 0.77777778 0.79047619 0.98524879
Algorithm 1 1.30901892 0.77777778 0.80952381 0.97505393
Algorithm 2 0.08996129 0.80000000 0.81904762 0.95314453

SMO Algorithm 0.05340354 0.80000000 0.82857143 –

ran more efficiently than the existing algorithm. However, the SMO algorithm ran

more quickly than the other algorithms, while keeping the highest score.

Next, let us look at the results of the multiclass classification using the iris (mul-

ticlass) dataset. Table 4 lists the computational times for learning and the classifica-

tion scores on the training and test sets. We used the sklearn.model selection.train test split

method provided by the scikit-learn package [28] to split the dataset into training

and test sets. To construct multiclass classifiers from Algorithm 1, 2, and 5, we used

sklearn.multiclass.OneVsRestClassifier class which provides a construction

of one-versus-the-rest (OvR) multiclass classifiers. In this experiment, the number

of instances in the training set was 45 and the number of instances in the test set

was 105. The results show that Algorithms 1 and 2 performed better than Pegasos

with respect to their scores for the training and test sets. In addition, the compu-

tational time of Algorithm 2 was shorter than those of Pegasos and Algorithm 1.

In this case, Algorithm 2 learned a classifier whose classification score is similar to

the one of the SMO algorithm in almost same running time.

To compare the algorithms in detail, we conducted experiments on other datasets:

australian, horse-colic, breast-cancer-wisconsin, census-income, internet-advertisements,

MNIST, RANDOM1 and RANDOM2. We performed a stratified five-fold cross-

validation with the sklearn.model selection.

StratifiedKFold class. Table 5 shows the averages of the computational times

for learning, the classification scores on the test sets, and the values of the ob-

jective function for each dataset. TLE (time limit exceeded) in the table means

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 21

that the experiment was compulsorily terminated because the running time of the

SMO algorithm excessively exceeded those of the other algorithms. The clas-

sification scores are calculated using the following formula implemented as the

sklearn.base.ClassifierMixin.score method,

(Score) :=
(#Accurate Instances)

(#Instances)
.

This value is an increasing evaluation of goodness of fit [28, Section 4].

22 K. HISHINUMA AND H. IIDUKA

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 23

T
a
b
l
e
5
.
A
v
er
ag
es

of
co
m
p
u
ta
ti
on

a
l
ti
m
es

fo
r
le
a
rn
in
g
,
cl
a
ss
ifi
ca
ti
o
n
sc
o
re
s
o
n
th
e
te
st

se
ts
,
a
n
d
va
lu
es

o
f
th
e
o
b
je
ct
iv
e

fu
n
ct
io
n
fo
r
ea
ch

d
at
as
et

A
u
st
ra
li
a
n

H
o
rs
e-
co
li
c

A
lg
or
it
h
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
as
os

2.
42
48
8
6
7
4

0
.8
2
9
2
0
9
5
7

0
.9
9
7
5
4
7
7
5

1
.5
4
0
1
1
6
7
2

0
.7
1
2
6
1
2
6
1

0
.9
9
9
0
8
8
9
2

A
lg
or
it
h
m

1
6.
04
89
8
9
3
4

0
.8
4
9
3
9
5
3
1

0
.9
9
0
7
0
5
8
2

3
.9
7
3
4
9
7
8
0

0
.7
0
7
1
3
2
1
3

0
.9
9
9
0
7
4
6
7

A
lg
or
it
h
m

2
0.
06
92
5
1
6
8

0
.8
5
2
2
7
3
0
0

0
.9
5
0
3
2
5
2
7

0
.0
5
8
4
1
9
1
7

0
.7
2
6
2
0
1
2
0

0
.9
6
4
8
5
2
1
6

S
M
O

A
lg
or
it
h
m

1.
63
86
3
5
4
7

0
.8
6
2
3
8
6
9
6

–
4
.9
6
0
6
5
0
6
8

0
.7
1
1
9
3
6
9
4

–

B
re
as
t-
ca
n
ce
r-
w
is
co
n
si
n

C
en
su
s-
in
co
m
e

A
lg
or
it
h
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
as
os

2.
49
11
6
9
3
2

0
.9
6
8
4
3
7
6
7

0
.9
9
2
2
8
7
3
8

1
8
0
.5
1
5
8
2
3
6
0

0
.7
0
1
9
1
6
3
8

0
.9
9
9
9
5
9
4
7

A
lg
or
it
h
m

1
6.
12
06
8
3
9
0

0
.9
6
5
5
8
0
5
3

0
.9
5
9
3
1
9
0
9

4
5
6
.4
0
5
6
9
0
0
0

0
.7
1
0
2
9
0
2
9

0
.9
9
9
0
9
1
1
4

A
lg
or
it
h
m

2
0.
06
90
6
7
8
9

0
.9
6
5
5
8
0
5
3

0
.8
2
9
7
0
3
7
4

0
.5
2
7
5
1
2
1
1

0
.7
1
0
3
1
0
7
8

0
.9
6
2
5
4
9
8
2

S
M
O

A
lg
or
it
h
m

0.
98
68
8
5
1
7

0
.9
6
9
8
9
7
0
8

–
T
L
E

–
–

In
te
rn
et
-a
d
ve
rt
is
em

en
ts

M
N
IS
T

A
lg
or
it
h
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
as
os

17
.9
09
8
5
6
7
1

0
.9
5
7
3
0
4
9
7

0
.9
9
9
5
4
9
3
3

6
9
.1
5
9
0
1
9
9
0

0
.9
8
6
8
7
3
5
6

0
.9
9
8
9
4
9
9
6

A
lg
or
it
h
m

1
44
.1
87
0
7
6
8
7

0
.5
9
4
3
6
7
4
4

0
.9
9
9
7
2
3
0
0

1
5
3
.4
0
2
5
2
7
0
0

0
.9
9
0
3
2
4
7
2

0
.9
9
8
2
7
8
1
9

A
lg
or
it
h
m

2
0.
30
78
3
5
3
4

0
.9
5
5
1
7
0
3
6

0
.8
7
8
7
9
6
7
7

0
.8
7
7
6
5
3
5
2

0
.9
9
2
6
9
2
5
3

0
.6
0
6
2
2
8
1
8

S
M
O

A
lg
or
it
h
m

T
L
E

–
–

T
L
E

–
–

R
A
N
D
O
M
1

R
A
N
D
O
M
2

A
lg
or
it
h
m

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

T
im

e
[s
ec
]

S
co
re

O
b
je
ct
iv
e

P
eg
as
os

0.
34
23
2
5
5
9

0
.8
8
0
0
0
0
0
0

0
.9
9
1
1
3
4
9
1

3
.9
9
6
4
2
0
1
0

0
.8
4
6
9
9
8
5
5

0
.9
9
9
4
1
9
1
0

A
lg
or
it
h
m

1
1.
38
52
7
1
6
5

0
.8
6
0
0
0
0
0
0

0
.9
9
7
8
9
2
2
4

1
7
.2
1
6
1
9
4
6
7

0
.6
8
4
9
9
3
8
5

0
.9
9
9
8
2
9
5
8

A
lg
or
it
h
m

2
0.
03
95
2
2
2
9

0
.9
0
0
0
0
0
0
0

0
.9
3
0
2
6
0
2
0

0
.0
4
7
0
2
9
2
8

0
.8
7
0
9
9
8
7
5

0
.9
5
7
4
0
1
1
6

S
M
O

A
lg
or
it
h
m

0.
09
19
7
5
2
0

0
.8
4
0
0
0
0
0
0

–
1
6
.8
2
6
5
6
5
0
7

0
.7
9
7
0
0
3
1
2

–

24 K. HISHINUMA AND H. IIDUKA

Let us evaluate the computational times for learning, the classification scores on

the test sets, and the values of the objective function in order. For a detailed, fair,

statistical comparison, we used an analysis of variance (ANOVA) test and Tukey–

Kramer’s honestly significant difference (HSD) test. We used the scipy.stats.f oneway

method in the SciPy library as the implementation of the ANOVA tests and the

statsmodels.stats.multicomp.pairwise tukeyhsd method in the StatsModels

package as the implementation of Tukey–Kramer’s HSD test. The ANOVA test

examines whether the hypothesis that the given groups have the same population

mean is rejected or not. Therefore, we can use it for finding an experimental result

that has a significant difference. Tukey–Kramer’s HSD test can be used to find

specifically which pair has a significant difference in groups. We set 0.05 (5%) as

the significance level for the ANOVA and Tukey–Kramer’s HSD tests and used the

results of each fold of the cross-validation for the statistical evaluations described

below.

First, we consider the computation times for learning. All p-values computed

by the ANOVA tests were much less than 0.05; this range was from 10−26 to

10−8. This implies that a significant difference exists in terms of the computation

time between the algorithms for every dataset. The results of the Tukey–Kramer’s

HSD tests showed that the computation times of Algorithm 2 for the australian,

horse-colic, breast-cancer-wisconsin, census-income, internet-advertisements, and

MNIST datasets were significantly shorter than those of Pegasos, Algorithm 1 and

the SMO algorithm. However, the null hypotheses about Algorithm 2 and the

SMO algorithm for the RANDOM1 dataset, and Algorithm 2 and Pegasos for the

RANDOM2 dataset were not rejected. Therefore, for most of the practical datasets,

Algorithm 2 runs significantly faster than the existing algorithms. However, it seems

that there are a few cases where the computation time of the Algorithm 2 roughly

equals those of the existing algorithms.

Next, we consider the classification scores on the test sets. The ANOVA tests in-

dicate that significant differences may exist in the census-income, internet-advertisements,

and RANDOM2 datasets. However, Tukey-Kramer’s HSD test could not reject

the null hypotheses between any two algorithms for the census-income dataset.

The results of the Tukey-Kramer’s HSD tests showed that the scores of Algo-

rithm 1 were significantly worse than those of the other algorithms for the internet-

advertisements and RANDOM2 datasets. Moreover, they showed that the scores of

Algorithm 2 were significantly better than those of Algorithm 1 and the SMO algo-

rithm for the RANDOM2 dataset. Although each algorithm may have advantages

or disadvantages compared with the others on certain datasets, the classification

scores of the four algorithms were roughly similar as a whole.

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 25

Next, we consider the values of the objective function. All p-values computed

by the ANOVA tests were much less than 0.05; this range was from 10−32 to

10−12. This implies that a significant difference exists in terms of the values of

the objective function between the algorithms for every dataset. The results of

the Tukey-Kramer’s HSD tests showed that the values of the objective function of

Algorithm 2 were significantly lower than those of Pegasos and Algorithm 1 for all

datasets. Therefore, Algorithm 1 reduced the value of objective function more than

the other algorithms.

Figure 2 illustrates a box-plot comparison of Pegasos, Algorithm 1, Algorithm 2,

and the SMO Algorithm in terms of classification scores on the test sets. We used

the results of all folds of the cross-validations and all datasets shown in Table 5 for

making this box-plot comparison. The horizontal lines in the boxes represent the

Figure 2. Box-plot comparison of Pegasos, Algorithm 1, Algo-
rithm 2 and SMO Algorithm in terms of classification scores on
the test sets

median scores, and the boxes represent the upper and lower quartiles of the resulting

scores. Similar to the above discussion of the average, we find that Algorithm 2 has

the best median of the classification scores among the four algorithms. The results

of Pegasos were similar to those of Algorithm 2; however, the computation time

of Algorithm 2 was dramatically shorter than that of Pegasos. Therefore, box-plot

comparison also shows that Algorithm 2 is the most useful method for learning

with a support vector machine.

26 K. HISHINUMA AND H. IIDUKA

In conclusion, the above comparison indicates that, whichever algorithm we use,

we can obtain classifiers whose classification abilities are similar. However, Al-

gorithm 2 runs faster than the other algorithms, and it reduces the value of the

objective function more. Therefore, the series of experiments and considerations

lead us to conclude that Algorithm 2 is useful for learning with a support vector

machine.

5.3. Application to learning multilayer neural networks. Let us consider

using the proposed algorithms to learn a multilayer neural network with. Our

algorithms are not limited to being used for learning support vector machines; they

can also be used for optimizing general functions. Therefore, we can also use them

for learning a multilayer neural network. Here, we should note that the incremental

subgradient algorithm is a specialization of the stochastic subgradient algorithm,

which is a useful algorithm for learning a neural network. Hence, we decided to

apply it to a concrete task for learning a multilayer neural network and evaluate

its applicability to learning deep neural networks.

We used the MNIST database [21] of handwritten digits for this experiment.

The goal is recognizing what Arabic numerals are written on the given images.

To achieve this goal, we can use 60,000 examples contained in the training set.

Each example is composed of a 28 × 28 image that expresses a handwritten digit

and its corresponding label that is an integer number from zero to nine. For the

evaluation and comparison of the learning results, we used a test set containing

10,000 examples formatted in the same way.

We constructed and trained a multilayer neural network shown in Figure 3 for

learning the MNIST database. We used three Affine layers with two ReLU (Rec-

Figure 3. Neural network diagram used to recognizing the
MNIST handwritten digits

tified Linear Unit) activation functions and, for the output, a Softmax activation

function. We used the cross-entropy error function as the objective function for

training the neural networks.

An Affine layer AW,b transforms a given vector x ∈ Rn into

AW,b(x) := Wx+ b

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 27

with the parameter W ∈ Rm×n and b ∈ Rm, where n is the number of dimensions

of the input vector and m is the number of dimensions of the output vector. The

first Affine layer transforms a 784(= 28 × 28)-dimensional vector, which expresses

a given image, into a 300-dimensional vector. The second Affine layer transforms

a 300-dimensional vector into a 100-dimensional vector. The third Affine layer

transforms a 100-dimensional vectors into a 10-dimensional vector, which expresses

each probability that the given image is the corresponding number. We used the

number of dimensions described in [20] for each Affine layer.

The ReLU function transforms each element xk (k = 1, 2, . . . , n) of a given

vector x ∈ Rn into max{xk, 0}. The Softmax function transforms a given vector

x := (xk)
n
k=1 ∈ Rn as follows:

Softmax(x) :=
1∑n

k=1 e
xk

(ex1 , ex2 , . . . , exk)⊤.

We define the cross-entropy error E : Rn → R, which is used as the objective

function for training neural networks, as follows:

E(x) := −
9∑

k=0

yk log(xk),

where the vector x := (xk)
9
k=0 ∈ R10 is the output of the current neural network

and yk (k = 0, 1, 2, . . . , 9) is one if the label is k and zero otherwise.

In this experiment, we wanted to minimize the cross-entropy error of the training

dataset concerning the parameters Wk, bk for each Affine layer Ak(k = 1, 2, 3). The

number of dimensions of the parameters is 784 × 300 + 300 = 235500 for the first

Affine layer, 300×100+100 = 30100 for the second Affine layer, and 100×10+10 =

1010 for the third Affine layer. Hence, the total number of dimensions of the

variables for this minimization problem is 235500 + 30100 + 1010 = 266610.

We ran Algorithm 1 with the Discrete Argmin Line Search described in Al-

gorithm 3 and compared its behaviors when we used a constant learning rate

λn,i := 0.1, diminishing learning rate λn,i := (0.1 × 20)/n, and learning rates

found by the line search in the step-range [(0.1 × 20)/(n + 100), (0.1 × 20)/n] for

the number of iterations (n = 1, 2, . . .). We set the coefficients for each step-size

such that these upper bounds would be equal to each other when the algorithm

exits. To use the proposed algorithm, we have to compute the subgradients of

the objective function. Here, we used approximations of them worked out by the

backpropagation algorithm.

We used the computer described in Subsection 2.1 for these experiments. We

wrote the experimental codes in Python 3.6.6 with the NumPy 1.15.4 library. We

divided the datasets into 600 mini-batches, each of which contained 100 examples; in

other words, we solved the problem to minimize the sum of 600 objective functions.

28 K. HISHINUMA AND H. IIDUKA

We converted and flattened the handwritten digit images into vectors and divided

their elements by 255 for regularization. The parameters for each Affine layer were

initialized using a Gaussian distribution of mean zero and variance 0.01.

Figure 4 shows the behavior of the values of the objective function for each

iteration. The violet line labelled “Constant” shows the result of using the constant

Figure 4. Behavior of the values of the objective function for each
iteration

learning rate, while the green line labelled “Diminishing” shows the result of using

the diminishing learning rate, and the cyan line labelled “Line Search” shows that

of using the learning rate computed with the line search. Overall, we can see that

all the results decrease monotonously. This implies that Algorithm 1 can minimize

the objective function with any of the above learning rate settings. The range of

reduction of the result by using the diminishing learning rate is less than others. One

possible reason is that learning rate becomes too small to minimize the objective

function sufficiently. Indeed, from the second to fourth iteration, the result for the

diminishing learning rate fell steeply, but this variation became smaller and smaller

after the sixth iteration. In contrast to this result, the results for the constant

learning rate and the learning rate computed with the line search minimized the

objective function continuously and dramatically. In particular, we can see that

the line search found the most efficient learning rates of these experiments.

Next, let us examine the classification accuracies. Figure 5 shows the behavior

of the classification accuracies for the training and test data. The left-hand graph

(Figure 5a) shows the classification accuracies for the training data and the right-

hand graph (Figure 5b) shows those for the test data. The legends of these graphs

are the same as in Figure 4. We can see that all the results increased, heading for

100%. For both data, the score of “Line Search” is higher than others and the score

of “Diminishing” is the lowest. This order is the same as what we saw in Figure 2.

Therefore, using the learning rates computed by the line search makes us able to

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 29

(a) Result for training data (b) Result for test data

Figure 5. Behavior of the classification accuracies for training
and test data

minimize the objective function most and to achieve the best parameters for the

neural network to recognize the handwritten digits.

6. Conclusions

We proposed novel incremental and parallel subgradient algorithms with a line

search that determines suitable learning rates automatically, algorithmically, and

appropriately for learning support vector machines. We showed that the algorithms

converge to optimal solutions of constrained nonsmooth convex optimization prob-

lems appearing in the task of learning support vector machines. Experiments jus-

tified the claimed advantages of the proposed algorithms. We compared them with

a machine learning algorithm Pegasos, which is designed to learn with a support

vector machine efficiently, in terms of prediction accuracy, value of the objective

function, and computational time. Regarding the parallel subgradient algorithm

in particular, the issue of the computational overhead of the line search can be

resolved using multi-core computing. Furthermore, we confirmed that we can ap-

ply our incremental subgradient algorithm with the line search to a neural network

and they can train it effectively. Overall, our algorithms are useful for efficiently

learning a support vector machine and for training a neural network including deep

learning.

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science

(JSPS KAKENHI Grant Numbers JP17J09220, JP18K11184). The authors would

like to thank the Topic Editor Yoichi Hayashi for giving us a valuable opportunity

to submit our research paper to this Research Topic. We are sincerely grateful to

the Topic Editor Guido Bologna and the two anonymous reviewers for helping us

30 K. HISHINUMA AND H. IIDUKA

improve the original manuscript. A pre-print version of this paper [14] has been

published on the arXiv e-print archive.

References

[1] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in

Hilbert spaces. Springer Science+Business Media, 2011.

[2] C. Beltran and F. J. Heredia. An effective line search for the subgradient method. Journal of

Optimization Theory and Applications, 125(1):1–18, Apr 2005.

[3] V. Berinde. Iterative Approximation of Fixed Points, volume 1912 of Lecture Notes in Math-

ematics. Springer–Verlag, Berlin Heidelberg, 2007.

[4] D. P. Bertsekas, A. Nedić, and O. A. E. Convex Analysis and Optimization. Athena Scientific,

Belmont, 2003.

[5] L. Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nı̂mes

91, Nimes, France, 1991. EC2.

[6] P. L. Combettes. A block-iterative surrogate constraint splitting method for quadratic signal

recovery. IEEE Transactions on Signal Processing, 51(7):1771–1782, July 2003.

[7] P. L. Combettes and J. C. Pesquet. A douglas–rachford splitting approach to nonsmooth

convex variational signal recovery. IEEE Journal of Selected Topics in Signal Processing,

1(4):564–574, Dec 2007.

[8] N. Cristianini, J. Shawe-Taylor, et al. An introduction to support vector machines and other

kernel-based learning methods. Cambridge university press, 2000.

[9] J. Y. B. Cruz and W. D. Oliveira. On weak and strong convergence of the projected gradient

method for convex optimization in real Hilbert spaces. Numerical Functional Analysis and

Optimization, 37(2):129–144, 2016.

[10] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017.

[11] W. L. Hare and Y. Lucet. Derivative-free optimization via proximal point methods. Journal

of Optimization Theory and Applications, 160(1):204–220, 2014.

[12] Y. Hayashi and H. Iiduka. Optimality and convergence for convex ensemble learning with

sparsity and diversity based on fixed point optimization. Neurocomputing, 273(Supplement

C):367 – 372, 2018.

[13] K. Hishinuma and H. Iiduka. Parallel subgradient method for nonsmooth convex optimization

with a simple constraint. Linear and Nonlinear Analysis, 1(1):67–77, 2015.

[14] K. Hishinuma and H. Iiduka. Incremental and parallel line search subgradient methods for

constrained nonsmooth convex optimization - numerically accelerated results by multi-core

computing. arXiv:1605.03738 [math.OC], 2016.

[15] H. Iiduka. Fixed point optimization algorithms for distributed optimization in networked

systems. SIAM Journal on Optimization, 23(1):1–26, 2013.

[16] H. Iiduka. Acceleration method for convex optimization over the fixed point set of a nonex-

pansive mapping. Mathematical Programming, 149(1):131–165, Feb 2015.

[17] H. Iiduka. Parallel computing subgradient method for nonsmooth convex optimization over

the intersection of fixed point sets of nonexpansive mappings. Fixed Point Theory and Ap-

plications, 2015:72, 2015.

[18] H. Iiduka. Convergence analysis of iterative methods for nonsmooth convex optimization over

fixed point sets of quasi-nonexpansive mappings. Mathematical Programming, 159(1):509–

538, 2016.

SUBGRADIENT ALGORITHMS WITH THE LINE SEARCH 31

[19] H. Iiduka. Line search fixed point algorithms based on nonlinear conjugate gradient directions:

application to constrained smooth convex optimization. Fixed Point Theory and Applications,

2016:77, 2016.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[21] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database of handwritten digits, 1998.

[22] E. Leopold and J. Kindermann. Text categorization with support vector machines. how to

represent texts in input space? Machine Learning, 46(1):423–444, Jan 2002.

[23] C.-J. Lin. LIBSVM data: Classification, regression, and multi-label, 2017.

[24] Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard

situations. Machine Learning, 46(1):191–202, Jan 2002.

[25] A. Nedić and D. Bertsekas. Convergence Rate of Incremental Subgradient Algorithms, pages

223–264. Springer US, Boston, MA, 2001.

[26] A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable opti-

mization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[27] J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag, New York, 2 edition,

2006.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[29] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector ma-

chines. Technical report, April 1998.

[30] B. T. Polyak. Introduction to optimization. translation series in mathematics and engineering.

Optimization Software, 1987.

[31] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky. Support vector

learning for semantic argument classification. Machine Learning, 60(1):11–39, Sep 2005.

[32] R. T. Rockafellar. Monotone operators associated with saddle-functions and minimax prob-

lems. Nonlinear functional analysis, 18(I):397–407, 1970.

[33] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-

gradient solver for SVM. Mathematical Programming, 127(1):3–30, 2011.

[34] K. Slavakis and I. Yamada. Robust wideband beamforming by the hybrid steepest descent

method. IEEE Transactions on Signal Processing, 55(9):4511–4522, Sep. 2007.

[35] W. Takahashi. Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Inc.,

Yokohama, 2009.

[36] W. F. Trench. Introduction to Real Analysis. Pearson Education, 2003.

[37] O. Tutsoy and M. Brown. An analysis of value function learning with piecewise linear control.

Journal of Experimental & Theoretical Artificial Intelligence, 28(3):529–545, 2016.

[38] O. Tutsoy and M. Brown. Reinforcement learning analysis for a minimum time balance prob-

lem. Transactions of the Institute of Measurement and Control, 38(10):1186–1200, 2016.

[39] P. Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.

[40] I. Yamada and N. Ogura. Hybrid steepest descent method for variational inequality prob-

lem over the fixed point set of certain quasi-nonexpansive mappings. Numerical Functional

Analysis and Optimization, 25(7-8):619–655, 2005.

32 K. HISHINUMA AND H. IIDUKA

[41] G. Yuan, Z. Meng, and Y. Li. A modified Hestenes and Stiefel conjugate gradient algorithm

for large-scale nonsmooth minimizations and nonlinear equations. Journal of Optimization

Theory and Applications, 168(1):129–152, 2016.

