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Abstract. There are many instances of optimization problems whose objective
functional can be expressed as a sum of convex functionals, such as in learning
with a support vector machine. Incremental and parallel subgradient methods are
useful algorithms for solving them. In particular, modified algorithms for com-
bining them with a line search overcome the disadvantage that choosing suitable
step sizes for efficient convergence is difficult. This paper performs convergence
analyses of these modified algorithms in a real Hilbert space.

1. Introduction

This paper considers optimization problems minimizing the sum of nonsmooth,
convex functionals with a simple convex constraint set in a real Hilbert space. There
are many instances of optimization problems whose objective functional can be
expressed as the sum of convex functionals [4, 6, 13, 15]. The optimization task
appearing in learning with a support vector machine is a typical instance [15]. The
goal of the learning is to make a classifier capable of correctly predicting the label
for each given data. To reach this goal, the task minimizes a loss functional that
expresses the degree of misclassification for each training data. To obtain a classifier
that can correctly predict all of the given data, the task minimizes the sum of these
loss functionals. Similarly to learning with a support vector machine, the task of
multilayer neural networks also forms a objective functional summing a number of
functionals [6]. Signal recovery [3], bandwidth allocation [7], and beamforming [16]
are instances of optimization problems minimizing the sum of nonsmooth, convex
functionals with a simple convex constraint set. Hence, this paper analyzes the
convergence properties of algorithms dealing with these problems.

Here, let us consider the existing algorithms for solving these problems. The
incremental subgradient method [10] and parallel subgradient method [5] are useful
algorithms specialized for solving optimization problems whose objective functional
is in a summed form. Both are variants of the subgradient method [5, 8, 9, 10],
which minimizes the objective functional with its subgradients (which is an exten-
sion of the gradient) and can solve the problem even if the objective functional is
nonsmooth. For minimizing the objective functional, the incremental subgradient
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method evaluates each functional composing the objective functional sequentially
and cyclically, while the parallel subgradient method evaluates each functional inde-
pendently. Because of the independence of the evaluation of each functional in the
parallel subgradient method, it can run in parallel with respect to each functional.
The incremental subgradient method, on the other hand, cannot be run in parallel.

These subgradient methods [5, 10] iterate updating of approximations for min-
imizing the objective functional. To improve the effectiveness of each iteration,
algorithms for solving unconstraint optimization problems use line search methods
to adjust the step size, which is a coefficient for updating [11]. In contrast to the
original subgradient methods, which are assigned a sequence of step sizes before
they run, optimization algorithms with the line search method determine their step
sizes at run-time. This implies that the line search can use the information to cal-
culate the step sizes at run-time and, thereby, the step sizes can be adjusted for
letting the iteration be more efficient.

The study [6] proposes combining incremental and parallel subgradient methods
[5, 10] with a line search. This combination resolves two issues of the existing
subgradient methods [5, 10]. The first is that the most suitable step size for assuring
efficient convergence cannot be known before the algorithm runs. The incremental
and parallel subgradient methods [5, 10] have to be given step sizes before they run.
However, the suitable step sizes depend on each approximation and may change
during the run. The line search works out this issue by appropriately adjusting the
step sizes at run-time. The second issue is that the most suitable step sizes may be
different for each functional composing the objective functional. The incremental
and parallel subgradient methods [5, 10] minimize an objective functional summing
two or more objective functionals, and they treat each of these objective functionals
separately. However, the step sizes cannot be set differently with respect to different
functionals. The algorithm proposed in [6] uses the line search for each functional,
and it hence can use suitable step sizes for each functional. However, the study [6]
only analyses the convergence of this algorithm in a finite-dimensional Euclidean
space.

This paper performs a convergence analysis of the algorithm in a real Hilbert
space. The main theorem shows the conditions for obtaining weak convergence of the
generated sequence to the optimal solution. This condition describes the acceptable
range of step sizes for letting the algorithm converge (this is called the step range
in [6]). The upper bound of this range is equivalent to choosing a diminishing step
size, which ensures convergence to the optimal solution in the existing incremental
and parallel subgradient methods [5, 10]. Whenever the step sizes are in this range,
the generated sequence weakly converges to the optimal solution even if the step
sizes for each functional are different. Concrete algorithms for finding appropriate
step sizes in the step range are presented in [6].

The main contribution of this paper is to clarify whether the convergence analysis
presented in [6] holds or not in a Hilbert space. This analysis shows that the
algorithm proposed in [6] generates a sequence strongly converging to the optimal
solution in a finite-dimensional Euclidean space. In a real Hilbert space, we can
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show that the generated sequence weakly converges to the optimal solution under
the same condition assumed in [6].

This paper is organized as follows. Section 2 gives the mathematical preliminar-
ies and mathematical formulation of the main problem. Section 3 shows the two
proposed algorithms and performs convergence analyses on them in a real Hilbert
space. Section 4 concludes this paper.

2. Mathematical Preliminaries

Let (H, ⟨·, ·⟩) be a real Hilbert space with its induced norm defined by ∥x∥ :=

⟨x, x⟩
1
2 . We define the notation R+ := (0,∞) and N := {1, 2, . . .}. Let xn → x

denote that the sequence {xn} converges to x, and let xn⇀x denote that the
sequence {xn} converges weakly to x.

A subgradient g of a convex function f : H → R at a point x ∈ H is defined by
g ∈ H such that f(x) + ⟨y − x, g⟩ ≤ f(y) for all y ∈ H. The set of all subgradients
at x is denoted as ∂f(x) [14], [17, Section 7.3].

The metric projection onto a nonempty, closed convex set C ⊂ H is denoted
by PC : H → C and defined by ∥x − PC(x)∥ = infy∈C ∥x − y∥[1, Section 4.2,
Chapter 28]. PC satisfies the nonexpansivity condition [17, Subchapter 5.2]; i.e.
∥PCx− PCy∥ ≤ ∥x− y∥ for all x, y ∈ H.

2.1. Main Problem. Let fi : H → [0,∞) (i = 1, 2, . . . ,K) be convex, continuous
functions, and let C be a nonempty, closed convex subset of H. Then, we would
like to

minimize f(x) :=

K∑
i=1

fi(x)

subject to x ∈ C.

(2.1)

Let us discuss Problem (2.1) in the situation that a closed convex subset C of a
real Hilbert space H is simple in the sense that PC can be computed within a finite
number of arithmetic operations. Examples of a simple, closed convex set C are a
closed ball, a half-space, and the intersection of two half-spaces [1, Examples 3.16
and 3.21, and Proposition 28.19].

Throughout this paper, we impose two assumptions: boundedness of the subgra-
dients and the existence of an optimal solution.

Assumption 2.1 ([10, Assumption 2.1, Proposition 2.4]). We suppose that

(A1) for each i = 1, 2, . . . ,K, there exists Mi > 0 such that ∥g∥ ≤Mi (x ∈ C; g ∈
∂fi(x));

(A2) there exists at least one optimal solution, i.e., argminx∈C f(x) ̸= ∅.
In addition, we define a constant M :=

∑K
i=1Mi.

The first assumption is also used for analyzing the convergence of the existing
incremental and parallel subgradient methods [5, 10]. Fortunately, this assumption
is satisfied when the constraint set C is bounded [1, Proposition 16.14.(iii)].
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3. Proposed Methods and their Convergence Analyses

3.1. Incremental Subgradient Method. Algorithm 1 is the proposed variant
of the incremental subgradient method. The main difference between Algorithm 1

Algorithm 1 Incremental Subgradient Method [6, Algorithm 1]

Require: ∀n ∈ N, [λn, λn] ⊂ R+.
1: n← 1, x1 ∈ C.
2: loop
3: yn,0 := xn.
4: for i = 1, 2, . . . ,K do ▷ In sequence
5: gn,i ∈ ∂fi(yn,i−1).

6: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
7: yn,i := PC(yn,i−1 − λn,ign,i).
8: end for
9: xn+1 := yn,K .

10: n← n+ 1.
11: end loop

and the existing one [10] is step 6. The step size λn of the existing method [10] is
decided before the algorithm runs. However, Algorithm 1 only needs the step range
[λn, λn]. This implies that a step size within the range used by Algorithm 1 can be
automatically determined at run-time. Concrete algorithms for choosing a suitable
step size from the given step range are described in [6].

Algorithm 1 satisfies the following properties.

Lemma 3.1. Suppose that Assumption 2.1 holds. Let {xn} be a sequence generated
by Algorithm 1. Then, for all y ∈ C and for all n ∈ N, the following inequality
holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
nM

2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the nonexpansivity of PC , the
definition of subgradients, and Assumption (A1), we have

∥xn+1 − y∥2 = ∥PC(yn,K−1 − λn,Kgn,K)− PC(y)∥2

≤ ∥yn,K−1 − y − λn,Kgn,K∥2

= ∥yn,K−1 − y∥2 − 2λn,K⟨yn,K−1 − y, gn,K⟩+ λ2
n,K∥gn,K∥2

≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i⟨yn,i−1 − y, gn,i⟩+
K∑
i=1

λ2
n,i∥gn,i∥2

≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(yn,i−1)− fi(y)) + λ
2
n

K∑
i=1

M2
i ,
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where the second equation comes from ∥x−y∥2 = ∥x∥2−2⟨x, y⟩+∥y∥2 (x, y ∈ H).
Using the definition of subgradients and the Cauchy-Schwarz inequality, we have

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y))− 2

K∑
i=1

λn,i(fi(yn,i−1)− fi(xn)) + λ
2
n

K∑
i=1

M2
i .

≤ ∥xn − y∥2 − 2

K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λn

K∑
i=1

Mi∥yn,i−1 − xn∥+ λ
2
n

K∑
i=1

M2
i .

Further, the nonexpansivity of PC and the triangle inequality mean that, for all
i = 2, 3, . . . ,K,

∥yn,i−1 − xn∥ = ∥PC(yn,i−2 − λn,i−1gn,i−1)− PC(xn)∥
≤ ∥yn,i−2 − xn − λn,i−1gn,i−1∥
≤ ∥yn,i−2 − xn∥+ λn,i−1∥gn,i−1∥
≤ ∥yn,i−2 − xn∥+ λnMi−1

≤ λn

i−1∑
j=1

Mj .

From the above inequality and the fact that ∥yn,0 − xn∥ = ∥xn − xn∥ = 0, we find
that

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + 2λ
2
n

K∑
i=1

Mi

i−1∑
j=1

Mj + λ
2
n

K∑
i=1

M2
i

= ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
n

(
K∑
i=1

Mi

)2

= ∥xn − y∥2 − 2
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
nM

2.

This completes the proof. □

3.2. Parallel Subgradient Method. Algorithm 2 below is an extension of the
parallel subgradient method [5]. The difference between Algorithm 2 and the
method in [5] is step 5. The existing method uses a given step size λn, while
Algorithm 2 chooses a step size λn from the step range [λn, λn] at run-time. The
reader may refer to [6] for concrete algorithms for choosing a suitable step size from
a given step range.

The sequence generated by Algorithm 2 satisfies the following property.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let {xn} be a sequence generated
by Algorithm 2. Then, for all y ∈ C and for all n ∈ N, the following inequality
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Algorithm 2 Parallel Subgradient Method [6, Algorithm 2]

Require: ∀n ∈ N, [λn, λn] ⊂ R+.
1: n← 1, x1 ∈ C.
2: loop
3: for all i ∈ {1, 2, . . . ,K} do ▷ Independently
4: gn,i ∈ ∂fi(xn).

5: λn,i ∈ [λn, λn]. ▷ By a line search algorithm
6: yn,i := PC(xn − λn,ign,i).
7: end for
8: xn+1 :=

1
K

∑K
i=1 yn,i.

9: n← n+ 1.
10: end loop

holds:

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
nM

2.

Proof. Fix y ∈ C and n ∈ N arbitrarily. From the convexity of ∥ · ∥2, the nonexpan-
sivity of PC , the definition of subgradients, and Assumption (A1), we have

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

K∑
i=1

PC(xn − λn,ign,i)− PC(y)

∥∥∥∥∥
2

≤ 1

K

K∑
i=1

∥xn − y − λn,ign,i∥2

=
1

K

K∑
i=1

(∥xn − y∥2 − 2λn,i⟨xn − y, gn,i⟩+ λ2
n,i∥gn,i∥2)

≤ ∥xn − y∥2 − 2

K

K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
nM

2.

This completes the proof. □

3.3. Convergence Analysis of Algorithms 1 and 2. Here, we first show that
the limit inferiors of {f(xn)} generated by Algorithms 1 and 2 are equal to the
optimal value of f . Next, we show that {xn} converges weakly to a solution of the
main problem (2.1). The following assumption is used to show the convergence of
Algorithms 1 and 2.

Assumption 3.3.

∞∑
n=1

λn =∞,

∞∑
n=1

λ
2
n <∞, lim

n→∞

λn

λn

= 1,

∞∑
n=1

(λn − λn) <∞.
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Lemma 3.4. Suppose that Assumptions 2.1 and 3.3 hold. For a sequence {xn}, if
there exists α ∈ R+ such that, for all y ∈ C and for all n ∈ N,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 − 2α
K∑
i=1

λn,i(fi(xn)− fi(y)) + λ
2
nM

2,(3.1)

then,

lim
n→∞

f(xn) = min
x∈C

f(x).

Proof. Assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= minx∈C f(x). Then, either

limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) or minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)

holds. First, we assume limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x). Recall {xn} ⊂
C and the definition f(x) :=

∑K
i=1 fi(x) in the main problem (2.1). The property

of the limit inferior and [18, Exercise 4.1.31] ensure that

min
x∈C

f(x) ≤ lim
n→∞

f(xn)

= lim
n→∞

λn

λn

K∑
i=1

fi(xn)

Further, from the positivity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i and the

assumption that limn→∞
∑K

i=1(λn,i/λn)fi(xn) < minx∈C f(x) lead to

min
x∈C

f(x) ≤ lim
n→∞

K∑
i=1

λn

λn

fi(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< min
x∈C

f(x).

This is a contradiction. Next, we assume minx∈C f(x) < limn→∞
∑K

i=1(λn,i/λn)fi(xn)
and let ŷ ∈ argminx∈C f(x). Then, there exists ε > 0 such that

f(ŷ) + 2ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn).

From the definition of the limit inferior, there exists n0 ∈ N such that, for all n ∈ N,
if n0 ≤ n, then

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε <
K∑
i=1

λn,i

λn

fi(xn).
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Now, λn,i/λn ≤ 1 and 0 ≤ fi(ŷ) (i = 1, 2, . . . ,K) hold. Therefore, for all n ∈ N, if
n0 ≤ n, then

ε = lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)− ε− f(ŷ)

<

K∑
i=1

λn,i

λn

fi(xn)−
K∑
i=1

fi(ŷ)

≤
K∑
i=1

λn,i

λn

(fi(xn)− fi(ŷ)).

From inequality (3.1), for all n ∈ N, if n0 ≤ n, we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2
nM

2

≤ ∥xn − ŷ∥2 − 2αλnε+ λ
2
nM

2

= ∥xn − ŷ∥2 − λn(2αε− λnM
2).

From Assumption 3.3, n1 ∈ N exists such that n0 ≤ n1, and, for all n ∈ N, if n1 ≤ n,
λn ≤ αε/M2. Hence, if n1 ≤ n, we have

0 ≤ ∥xn+1 − ŷ∥2

≤ ∥xn − ŷ∥2 − αελn

≤ ∥xn1 − ŷ∥2 − αε
n∑

k=n1

λk.

for all n ∈ N. From Assumption 3.3, the right side diverges negatively, which is a
contradiction. Overall, we have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) = min
x∈C

f(x).

Next, let us assume that limn→∞
∑K

i=1(λn,i/λn)fi(xn) ̸= limn→∞ f(xn). Now,

λn,i/λn ≤ 1 and 0 ≤ fi(xn) (i = 1, 2, . . . , N) hold for all n ∈ N. Therefore,
we have

lim
n→∞

K∑
i=1

λn,i

λn

fi(xn) ≤ lim
n→∞

f(xn).
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Hence, from the positivity of fi (i = 1, 2, . . . ,K), the fact that λn ≤ λn,i, and [18,
Exercise 4.1.31], we have

lim
n→∞

f(xn) = lim
n→∞

λn

λn

f(xn)

≤ lim
n→∞

K∑
i=1

λn,i

λn

fi(xn)

< lim
n→∞

f(xn).

However, this is a contradiction. This completes the proof. □
Theorem 3.5. Suppose that Assumptions 2.1 and 3.3 hold. The sequence {xn}
generated by Algorithm 1 or 2 converges weakly to an optimal solution to the main
problem (2.1).

Proof. Let ŷ ∈ argminx∈C f(x) and fix n ∈ N. From Lemmas 3.1 and 3.2, there
exists α ∈ R+ such that

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2α

K∑
i=1

λn,i(fi(xn)− fi(ŷ)) + λ
2
nM

2.

By 0 ≤ fi(ŷ), fi(xn) (i = 1, 2, . . . ,K), we have

∥xn+1 − ŷ∥2 ≤ ∥xn − ŷ∥2 − 2αλn

K∑
i=1

fi(xn) + 2αλn

K∑
i=1

fi(ŷ) + λ
2
nM

2

= ∥xn − ŷ∥2 − 2αλn

K∑
i=1

(fi(xn)− fi(ŷ)) + 2α(λn − λn)

K∑
i=1

fi(ŷ) + λ
2
nM

2

≤ ∥xn − ŷ∥2 + 2αf(ŷ)(λn − λn) + λ
2
nM

2

≤ ∥x1 − ŷ∥2 + 2αf(ŷ)
n∑

i=1

(λi − λi) +M2
n∑

i=1

λ
2
i .

From Assumption 3.3, the left side of the above inequality is bounded. Hence, {xn}
is bounded. Using [2, Lemma 1.7], J ∈ R exists for all ŷ ∈ argminx∈C f(x) such
that limn→∞ ∥xn − ŷ∥ = J . Moreover, from Lemma 3.4, a subsequence {f(xni)} ⊂
{f(xn)} exists such that limi→∞ f(xni) = f(ŷ). From [1, Theorem 3.32], C is a
weak closed set. Therefore, there exists a subsequence {xnij

} ⊂ {xni} and a point

u ∈ C such that xnij
⇀u. Hence, from [1, Theorem 9.1, Proposition 9.26], we

obtain

min
x∈C

f(x) ≤ f(u)

≤ lim
j→∞

f(xnij
)

= min
x∈C

f(x).
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This implies that u ∈ argminx∈C f(x). Let {xnik
} ⊂ {xni} be another subsequence

and assume xnik
⇀v ∈ argminx∈C f(x) and u ̸= v. From [12, Lemma 1], we have

lim
n→∞

∥xn − u∥ = lim
j→∞

∥xnij
− u∥ < lim

j→∞
∥xnij

− v∥ = lim
n→∞

∥xn − v∥

= lim
k→∞

∥xnik
− v∥ < lim

k→∞
∥xnik

− u∥ = lim
k→∞

∥xn − u∥.

This is a contradiction. Accordingly, any subsequence of {xni} weakly converges
to u ∈ argminx∈C f(x). Therefore, from [17, Theorem 5.4.1], xni ⇀u. Now let
{xnj} ⊂ {xn} be another subsequence and assume xnj ⇀w ̸= u. Then, from [12,
Lemma 1], we have

lim
n→∞

∥xn − u∥ = lim
i→∞
∥xni − u∥ < lim

i→∞
∥xni − w∥ = lim

n→∞
∥xn − w∥

= lim
j→∞

∥xnj − w∥ < lim
j→∞

∥xnj − u∥ = lim
n→∞

∥xn − u∥.

This is a contradiction. Therefore, any subsequence of {xn} weakly converges to
u ∈ argminx∈C f(x). Hence, by [17, Theorem 5.4.1], xn⇀u. This completes the
proof. □

4. Conclusion

We proposed Algorithms 1 and 2 for solving Problem (2.1) in Hilbert space.
Theorem 3.5, which is proved in a real Hilbert space, shows that the sequence
generated by Algorithms 1 and 2 weakly converges to the optimal solution. This
result extends the existing study [6] to a real Hilbert space.
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