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Abstract

Network bandwidth allocation is a central issue in modern communication
networks. The main objective of the bandwidth allocation is to allocate
an optimal bandwidth for maximizing a predefined utility over the capacity
constraints to traffic sources. When a centralized operator, which manages all
the bandwidth allocations in the network, has a certain operational policy,
the bandwidth allocation reflecting the operational policy should result in
the network being more stable and reliable. Accordingly, we need to solve
a network bandwidth allocation problem under both capacity constraints
and operational constraints. To develop a novel algorithm for solving the
problem, we translate the network bandwidth allocation problem into one of
minimizing a convex objective function over the intersection of the fixed point
sets of certain quasi-nonexpansive and nonexpansive mappings and propose
a fixed point optimization algorithm for solving it. We numerically compare
the proposed algorithm with the existing algorithm for solving a concrete
bandwidth allocation problem and show its effectiveness.
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1. Introduction

1.1. Background

Network resource allocation is needed for making communication net-
works reliable and stable, and it is of practical importance to allocate, fairly
and effectively, finite network resources, such as power [15, 29], channel [22],
and bandwidth [16, 19, 23, 30, 36], to network users.

The objective of utility-based bandwidth allocation [23, 30, 36] in particular
is to share the available bandwidth among traffic sources so as to maximize
the overall utility under the capacity constraints.

The utility is modeled as a function, denoted by U , of the transmission
rates allocated to the traffic sources, and it represents the efficiency and
fairness of bandwidth sharing [23, 30, 36]. We assume that U is continuously
differentiable and concave. A well-known utility function is the weighted
proportionally fair function [23, 30, 36] defined for all x := (x1, x2, . . . , xS)

T ∈
RS

+\{0} by Upf(x) :=
∑

s∈S ws log xs, where xs (> 0) denotes the transmission
rate of source s (∈ S := {1, 2, . . . , S}), ws (> 0) stands for the weighted
parameter for source s, and RS

+ := {(x1, x2, . . . , xS)
T ∈ RS : xs ≥ 0 (s ∈ S)}.

The optimal bandwidth allocation corresponding to Upf is said to be weighted
proportionally fair.

The capacity constraint for each link is an inequality constraint in which
the sum of the transmission rates of all the sources sharing the link is less
than or equal to the capacity of the link, and hence, the capacity constraint
set for each link l (∈ L := {1, 2, . . . , L}) is expressed as RS

+ ∩ Cl, where

Cl :=

{
x := (x1, x2, . . . , xS)

T ∈ RS :
∑
s∈S

xsIs,l ≤ cl

}
,

cl (> 0) stands for the capacity of link l, and Is,l takes the value 1 if l is the
link used by source s, and 0 otherwise.

Therefore, our objective in bandwidth allocation is to solve the following
utility-based bandwidth allocation problem [23], [36, Chapter 2] for maximizing
the utility function subject to the capacity constraints:

Maximize Upf(x) subject to x ∈ C,
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where C (⊂ RS) stands for the capacity constraint set defined by

C := RS
+ ∩

∩
l∈L

Cl = RS
+ ∩

∩
l∈L

{
(x1, x2, . . . , xS)

T ∈ RS :
∑
s∈S

xsIs,l ≤ cl

}
.

(1)

1.2. Utility-based bandwidth allocation problem with operational constraint

We will discuss a utility-based bandwidth allocation problem subject to
not only the capacity constraints but also an operational constraint. The
operator has an operational policy to make the network more stable and
reliable. For example, when sources exist in the network such that they get
a low (resp. high) degree of satisfaction, the operator attempts to re-allocate
bandwidth so as to enable them to send data at high (resp. low) transmission
rates. When the available bandwidth is limited in the network, the operator
needs to control the sum of the transmission rates of all sources. When the
network is controlled by using a certain indicator function which represents
the network’s performance, the operator tries to design the network so as
to satisfy a constraint incorporating the indicator function. The operational
constraint set representing such operational policies can be written as

Cop :=
{
x := (x1, x2, . . . , xS)

T ∈ RS : P(x) ≤ p
}
, (2)

where P : RS → R is convex (i.e., P satisfies the continuity [5, Theorem
4.1.3]) and is not always differentiable, and p ∈ R. The operator can set
Cop = {x ∈ RS : xs0 ≤ p} when it tries to limit the transmission rate of source
s0, Cop = {x ∈ RS :

∑
s∈S ωsxs ≤ p} (ωs ≥ 0 (s ∈ S)) when it tries to limit

the transmission rates of all sources, and Cop = {x ∈ RS :
∑

s∈S ωsPs(xs) ≤
p} (ωs ≥ 0 (s ∈ S), Ps : R → R is nondifferentiable1) when the network is
controlled by P(x) :=

∑
s∈S ωsPs(xs).

Therefore, we can formulate a utility-based bandwidth allocation problem
with both the capacity constraints and the operational constraint as follows:

Maximize Upf(x) subject to x ∈ C ∩ Cop, (3)

where one assumes C ∩ Cop ̸= ∅.2

1If the network’s performance increases when all sources’ transmission rates are more
than a certain value x0 (> 0), Ps(x) is expressed as 0 (0 ≤ x ≤ x0), or x+ x0 (x ≥ x0).

2For example, 0 ∈ C ∩Cop holds when P(x) :=
∑

s∈S ωsxs, ωs ∈ R (s ∈ S), and p ≥ 0.
Since the operator knows the explicit form of C, it can set Cop such that C ∩ Cop ̸= ∅.
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There are useful methods [7, 10, 11, 25, 31, 37, 42] for solving optimization
problems with nonsmooth constraints and optimization problems with nons-
mooth objective functions. One avenue for addressing the lack of smoothness
is via a variety of smoothing techniques (e.g., deterministic smoothing tech-
niques [7] and convolution-based smoothing techniques [42]). Other methods
are, for example, path search algorithms [11, Subchapter 8.1], trust region
methods [11, Subchapter 8.4], equation-based algorithms [11, Chapter 9],
variational inequality-based algorithms [11, Chapter 10], subgradient meth-
ods [31, Chapter 3], and bundle trust region algorithms [31, Subchapter 3.3].

To develop an algorithm for solving Problem (3), we will focus on the
following variational inequality [9, Chapter II], [10, Chapter 1], [24, Chapter
I], [33, Subchapter 6.D] which coincides with Problem (3) [9, Chapter 2,
Proposition 2.1 (2.1) and (2.2)].

Problem 1.1 (Utility-based bandwidth allocation problem under capacity
constraints).

Find x⋆ ∈VI (C ∩ Cop,−∇Upf)

:= {x⋆ ∈ C ∩ Cop : ⟨x− x⋆,−∇Upf(x
⋆)⟩ ≥ 0 (x ∈ C ∩ Cop)} ,

where ⟨·, ·⟩ stands for the inner product of RS and ∇Upf : RS → RS is the
gradient of Upf .

In this paper, we shall devise an iterative algorithm for solving Problem
1.1 based on iterative techniques for optimization over the fixed point sets of
certain mappings. With this goal in mind, we will translate Problem 1.1 into
an optimization problem over the intersection of the fixed point sets.

1.3. Optimization problem over fixed point sets

We first show that C in (1) can be expressed as the fixed point set of
a mapping composed of the metric projections onto Cls. Let us define the
following mapping, Tproj : RS → RS, composed of the metric projections onto
RS

+ and Cls:

Tproj := PRS
+

∏
l∈L

PCl
= PRS

+
PC1PC2 · · ·PCL

, (4)
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where PD stands for the metric projection3 onto a nonempty, closed convex
set D (⊂ RS). Then, Tproj satisfies the nonexpansivity condition4 because
PRS

+
and PCl

s are nonexpansive. Moreover, C in (1) coincides with the fixed

point set of Tproj [1, Proposition 2.10], i.e.,

C = Fix(Tproj) :=
{
x ∈ RS : Tproj(x) = x

}
. (5)

Let us show that Cop in (2) can be expressed as the fixed point set of
a subgradient projection. The subgradient projection relative to P(·) − p,
denoted by Qsp : RS → RS, is defined as follows:

Qsp(x) :=

x− P(x)− p

∥P ′(x)∥2
P ′(x) if P(x) > p,

x otherwise,
(6)

where P ′(x) ∈ ∂P(x) := {z ∈ RS : (P(y)− p) ≥ (P(x)− p) + ⟨y − x, z⟩ (y ∈
RS)} stands for the subgradient of P(·) − p at x ∈ RS. Accordingly, Qsp is
quasi-firmly nonexpansive5 [3, Proposition 2.3], [38, Lemma 2.8 in Subchapter
2.4.3]. Moreover, Qsp is fixed-point closed6 [2, Lemma 3.1(ii)]. Fix(Qsp) is
characterized as follows [3, Proposition 2.3], [38, Lemma 2.8 in Subchapter
2.4.3]:

Cop = Fix(Qsp) :=
{
x ∈ RS : Qsp(x) = x

}
. (7)

Meanwhile, −∇Upf is strongly monotone and Lipschitz continuous on a
certain set.7 From (5) and (7), we can see that Problem 1.1 can be expressed
as the following variational inequality over the intersection of the fixed point
sets of Tproj and Qsp defined by (4) and (6), respectively:

Find x⋆ ∈VI (Fix (Tproj) ∩ Fix (Qsp) ,−∇Upf) . (8)

3The metric projection PD is defined by PD(x) ∈ D and ∥x−PD(x)∥ = infy∈D ∥x− y∥
(x ∈ RS), where ∥ · ∥ is the norm of RS .

4T is said to be nonexpansive if ∥T (x)− T (y)∥ ≤ ∥x− y∥ (x, y ∈ RS).
5Q is said to be quasi-nonexpansive if ∥Q(x) − y∥ ≤ ∥x − y∥ (x ∈ RS , y ∈ Fix(Q) :=

{y ∈ RS : Q(y) = y}). R is said to be quasi-firmly nonexpansive if there exists a quasi-
nonexpansive mapping Q such that R(x) = (1/2)(x+Q(x)) (x ∈ RS).

6Q is fixed-point closed if x ∈ Fix(Q) whenever (xn)n∈N (⊂ RS) converges to x (∈ RS)
and limn→∞ ∥xn −Q(xn)∥ = 0.

7We can prove that ⟨x− y,∇f(x)−∇f(y)⟩ ≥ (mins∈S ws/(maxs∈S bs)
2)∥x− y∥2 and

∥∇f(x) − ∇f(y)∥ ≤ (maxs∈S ws/mins∈S as)∥x − y∥ for all x, y ∈ Πs∈S [as, bs], where
0 < as ≤ bs < ∞ (s ∈ S) and f := −Upf . See Subsection 2.2 for the definitions of strongly
monotone and Lipschitz continuous operators.
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1.4. Main problem and our objective

This paper discusses a more general variational inequality that includes
Problem (8).

Problem 1.2. Assume that

(A1) Q : RS → RS is quasi-firmly nonexpansive and fixed-point closed;

(A2) T : RS → RS is nonexpansive with X := Fix(T ) ∩ Fix(Q) ̸= ∅;
(A3) f : RS → R is continuously differentiable, and ∇f : RS → RS is strongly

monotone with a constant c > 0 and Lipschitz continuous with a con-
stant L > 0.

Our objective is to

find x⋆ ∈ VI(Fix(T ) ∩ Fix(Q),∇f)

:= {x⋆ ∈ X : ⟨x− x⋆,∇f(x⋆)⟩ ≥ 0 (x ∈ X)} .

The main objective of the paper is to devise an iterative algorithm, based
on iterative techniques for convex optimization over fixed point sets [8, 17,
20, 21, 39, 41] for solving Problem 1.2 and its convergence analysis.

1.5. Related work, the proposed algorithm, and the contributions of this paper

Let us consider the case where Fix(T ) ∩ Fix(Q) in Problem 1.2 is simple
in the sense that the metric projection onto Fix(T ) ∩ Fix(Q) can be easily
calculated.8 The projected gradient methods [6, 14] can be applied to Prob-
lem 1.2 in this case. Generally, the projection onto Fix(T ) ∩ Fix(Q) cannot
be easily calculated. For example, the projection onto C in (5) cannot be
easily calculated because C := RS

+ ∩
∩

l∈L Cl is polyhedral. Meanwhile, the
nonexpansive mapping Tproj := PRS

+

∏
l∈L PCl

satisfying Fix(Tproj) = C (see

also (4) and (5)) can be computed because RS
+ and Cls are half-spaces. From

this viewpoint, a number of iterative algorithms that use nonexpansive map-
pings have been developed for solving Problem 1.2. These are referred to
here as fixed point optimization algorithms.

8The metric projection onto a closed ball, a closed cone, or a half-space can be easily
calculated and satisfies the nonexpansivity condition. The metric projection onto a half-
space, H := {x ∈ RS : ⟨a, x⟩ ≤ b}, where a ( ̸= 0) ∈ RS and b ∈ R, is expressed as
PH(x) := x− [max{0, ⟨a, x⟩ − b}/∥a∥2]a (x ∈ RS) [1, p. 406], [4, Subchapter 28.3]
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There are fixed point optimization algorithms [8, 20, 39, 41] for solving
Problem 1.2 when Q is the identity mapping I, T is nonexpansive, and ∇f
is strongly monotone and Lipschitz continuous. Combettes [8] presented a
block-iterative surrogate constraint splitting method without using diminish-
ing sequences and applied it to signal recovery. A hybrid steepest descent
method (HSDM) [39, 41] was applied to beamforming [35]. Iiduka and Uchida
[19] applied fixed point optimization algorithms [20, 41] to bandwidth alloca-
tion problems for concave utility functions in which the constraints about the
preferable transmission rate fall in the infeasible region. Iiduka [17] presented
distributed fixed point optimization algorithms for Problem 1.2 when Q := I,
T is 1/2-averaged nonexpansive, and ∇f is strictly monotone. Fixed point
optimization algorithms [15, 16, 19] were presented for solving Problem 1.2
when Q := I, T is 1/2-averaged nonexpansive, and ∇f is continuous. The
algorithm [16] was applied to bandwidth allocation problems for nonconcave
utility functions in which the constraints about the preferable transmission
rate fall in the infeasible region. An application of the algorithm [15] to
power control was discussed in [15]. Yamada and Ogura [40] applied HSDM
to Problem 1.2 when Q is quasi-nonexpansive on RS and quasi-shrinking on
a certain set, T := I, and ∇f is strongly monotone and Lipschitz continuous,
and proved that HSDM converges to the solution to Problem 1.2 in this case
[40, Theorem 4].

In this paper, we devise a fixed point optimization algorithm for solving
the original Problem 1.2, which the existing algorithms described in the above
paragraph cannot solve.

The contribution of this paper is that it is the first study to tackle varia-
tional inequality problems over the fixed point sets of a quasi-nonexpansive
mapping and a nonexpansive mapping and it proposes a fixed point opti-
mization algorithm for these variational inequality problems. We can apply
the algorithm to utility-based bandwidth allocation problems with concave
utility functions, and it can determine an optimal bandwidth allocation. The
problem of minimizing a function f with (A3) over the fixed point set of a
nonexpansive mapping T includes other practical network resource allocation
problems, such as power allocation [34], channel allocation [22], and storage
allocation [18, 26]. When the operational constraint set can be expressed as
the fixed point set of a certain quasi-nonexpansive mapping (see (2)), prac-
tical network resource allocation problems with operational constraints can
be formulated as Problem 1.2. Therefore, our algorithm can be applied to
not only bandwidth allocation but also other network resource allocations.
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The organization of the paper is as follows. Section 2 provides the nec-
essary mathematical preliminaries. Section 3 presents a fixed point opti-
mization algorithm (Algorithm 3.1) for solving Problem 1.2. It proves that
Algorithm 3.1 converges to the unique solution to Problem 1.2 under cer-
tain assumptions (Theorem 3.1). Section 4 applies the algorithm to concrete
utility-based bandwidth allocation problem and provides numerical exam-
ples. Section 5 concludes the paper by summarizing the key points.

2. Mathematical Preliminaries

This section gives necessary mathematical preliminaries. Let N be the
set of all positive integers and zero, i.e., N := {0, 1, 2, . . .}, let RS be an S-
dimensional Euclidean space with inner product, ⟨·, ·⟩, and its induced norm,
∥ · ∥, and let RS

+ := {x := (x1, x2, . . . , xS)
T ∈ RS : xs ≥ 0 (s = 1, 2, . . . , S)}.

The fixed point set of a mapping, T : RS → RS, is denoted by Fix(T ) := {x ∈
RS : T (x) = x}. Let I be the identity mapping on RS.

2.1. Nonexpansivity and quasi nonexpansivity

A mapping, T : RS → RS, is said to be nonexpansive [1], [12, Chapter 3],
[13, Chapter 1] if ∥T (x)− T (y)∥ ≤ ∥x− y∥ for all x, y ∈ RS. Obviously, any
nonexpansive mapping satisfies continuity. The fixed point set of any non-
expansive mapping satisfies closedness and convexity [13, Proposition 5.3].
A well-known example of a nonexpansive mapping is the metric projection,
PD : RS → RS, onto a nonempty, closed convex set, D (⊂ RS), defined by
PD(x) ∈ D and ∥x− PD(x)∥ = infy∈D ∥x− y∥.

A mapping, Q : RS → RS, is said to be quasi-nonexpansive [4, Definition
4.1 (iii)] if ∥Q(x) − y∥ ≤ ∥x − y∥ for all x ∈ RS and for all y ∈ Fix(Q).
When a quasi-nonexpansive mapping has one fixed point, its fixed point set
is closed and convex [3, Proposition 2.6], [40, Proposition 1 (a)]. R : RS → RS

is called an α-averaged quasi-nonexpansive mapping if α ∈ (0, 1] and a quasi-
nonexpansive mapping, Q : RS → RS, exist such that R = αI + (1 − α)Q.
In particular, a 1/2-averaged quasi-nonexpansive mapping is called a quasi-
firmly nonexpansive mapping. We shall provide an important example of a
quasi-firmly nonexpansive mapping. Let f0 : RS → R be a convex function
with lev≤0f0 := {x ∈ RS : f0(x) ≤ 0} ̸= ∅. Then, the subdifferential [32,
Section 23] of f0 at x ∈ RS, denoted by ∂f0(x) := {z ∈ RS : f0(y) ≥ f0(x) +
⟨y−x, z⟩ (y ∈ RS)}, has a point and the subgradient of f0 at x is denoted by
f ′
0(x) ∈ ∂f0(x). The subgradient projection relative to f0 [3, Proposition 2.3],
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[38, Lemma 2.8 in Subchapter 2.4.3], Qsp : RS → RS, defined for all x ∈ RS

by

Qsp(x) :=

x− f0(x)

∥f ′
0(x)∥2

f ′
0(x) if f0(x) > 0,

x otherwise

is quasi-firmly nonexpansive (i.e., 2Qsp−I is quasi-nonexpansive) and satisfies
Fix(Qsp) = Fix(2Qsp − I) = lev≤0f0. Moreover, we have the following:

Proposition 2.1.

(i) [2, Lemma 3.1] Qsp is fixed-point closed, i.e., x ∈ Fix(Qsp) whenever
(xn)n∈N (⊂ RS) converges to x (∈ RS) and limn→∞ ∥xn−Qsp(xn)∥ = 0;

(ii) 2Qsp − I is fixed-point closed.

It is obvious from Fix(Qsp) = Fix(2Qsp − I) and Proposition 2.1(i) that
Proposition 2.1(ii) holds. Any strictly pseudo-contractive mapping9 satisfies
the fixed-point closedness condition [28, Proposition 2.1(ii)]. This means that
any nonexpansive mapping also satisfies the fixed-point closedness condition.

The following lemma indicates the properties of quasi-firmly nonexpansive
mappings.

Lemma 2.1. [27, Remark 2.1] Suppose that Q is quasi-firmly nonexpansive
with Fix(Q) ̸= ∅ and α ∈ (0, 1], and define Qα := αI + (1− α)Q. Then, the
following hold:

(i) Fix(Q) = Fix(Qα);

(ii) Qα is quasi-nonexpansive;

(iii) ⟨x−Qα(x), x− y⟩ ≥ (1− α)∥x−Q(x)∥2 (x ∈ RS, y ∈ Fix(Q)).

2.2. Monotone variational inequality

An operator, A : RS → RS, is said to be monotone [43, Definition 25.2 (i)]
if ⟨x−y, A(x)−A(y)⟩ ≥ 0 for all x, y ∈ RS. A : RS → RS is called a strongly
monotone operator with c > 0 (c-strongly monotone operator) [43, Definition
25.2 (iii)] if ⟨x−y, A(x)−A(y)⟩ ≥ c∥x−y∥2 for all x, y ∈ RS. A : RS → RS is

9T is said to be strictly pseudo-contractive if there exists α ∈ [0, 1) such that ∥T (x)−
T (y)∥2 − α∥(x − T (x)) − (y − T (y))∥2 ≤ ∥x − y∥2 (x, y ∈ RS). The class of strictly
pseudo-contractive mappings includes the class of nonexpansive mappings.
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called a Lipschitz continuous operator with L > 0 (L-Lipschitz continuous)
if ∥A(x) − A(y)∥ ≤ L∥x − y∥ for all x, y ∈ RS. Define f : RS → R for all
x ∈ RS by f(x) := (1/2)⟨x,Ax⟩+ ⟨b, x⟩, where A ∈ RS×S is positive definite
and b ∈ RS. Then, ∇f(x) = Ax + b is λmin-strongly monotone and λmax-
Lipschitz continuous, where λmin and λmax are the minimum eigenvalue and
maximum eigenvalue of A, respectively [39, Lemma 2.9]. The gradient of the
weighted proportionally fair function also satisfies the strong monotonicity
and Lipschitz continuity conditions (See Footnote 7).

The following lemma is used to prove Theorem 3.1:

Lemma 2.2. [39, Lemma 3.1] Suppose that A : RS → RS is c-strongly mono-
tone and L-Lipschitz continuous and µ ∈ (0, 2c/L2). For α ∈ [0, 1], define
Tα : RS → RS by Tα(x) := x−µαA(x) for all x ∈ RS. Then, for all x, y ∈ RS,

∥Tα(x)− Tα(y)∥ ≤ (1− τα)∥x− y∥

holds, where τ := 1−
√
1− µ(2c− µL2) ∈ (0, 1].

The variational inequality problem [9, Chapter II], [24, Chapter I] for
a monotone operator, A : RS → RS, over a nonempty, closed convex set,
D ⊂ RS, is to find a point in

VI(D,A) := {x⋆ ∈ D : ⟨y − x⋆, A(x⋆)⟩ ≥ 0 (y ∈ D)} .

Some properties of the solution set of the monotone variational inequality
are as follows:

Proposition 2.2. Suppose that D (⊂ RS) is nonempty, closed, and convex,
A : RS → RS is continuous, and f : RS → R is convex and differentiable.
Then,

(a) [9, Chapter 2, Proposition 2.1 (2.1) and (2.2)] VI(D,∇f) = argminx∈D f(x) :=
{x⋆ ∈ D : f(x⋆) = minx∈D f(x)}.

(b) [10, Corollary 2.2.5] VI(D,A) ̸= ∅ when D is compact.

(c) [38, Theorem 2.31] VI(D,A) consists of one point, if A is strongly
monotone and Lipschitz continuous.

The closedness and convexity [13, Proposition 5.3], [3, Proposition 2.6],
[40, Proposition 1(a)] of Fix(T ) ∩ Fix(Q) ( ̸= ∅) and (A3) guarantee the
existence and uniqueness of the solution to Problem 1.2 (Proposition 2.2(c)).

We need the following useful lemma to prove the main theorem.
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Lemma 2.3. [27, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γnj
)j∈N

(⊂ (Γn)n∈N) exists such that Γnj
< Γnj+1 for all j ∈ N. Define (τ(n))n≥n0 (⊂

N) by τ(n) := max{k ≤ n : Γk < Γk+1} for some n0 ∈ N. Then, (τ(n))n≥n0

is increasing and limn→∞ τ(n) = ∞. Moreover, Γτ(n) ≤ Γτ(n)+1 and Γn ≤
Γτ(n)+1 for all n ≥ n0.

3. Fixed Point Optimization Algorithm for Solving Problem 1.2

This section presents the following algorithm:

Algorithm 3.1 (Fixed point optimization algorithm).
Step 0. Take (αn)n∈N, (βn)n∈N ⊂ (0,∞), and µ, α > 0, and define Qα :=

αI + (1− α)Q. Choose x0 ∈ RS arbitrarily, and let n := 0.
Step 1. Given xn ∈ RS, compute xn+1 ∈ RS as{

yn := Qα (xn)− µαn∇f (Qα (xn)) ,

xn+1 := βnxn + (1− βn)T (yn) .

Update n := n+ 1 and go to Step 1.

The following theorem constitutes the convergence analysis of Algorithm
3.1.

Theorem 3.1. Suppose that µ ∈ (0, 2c/L2), and (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂
(0, 1) satisfy10 (i) limn→∞ αn = 0, (ii)

∑∞
n=1 αn = ∞, (iii) 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1. Then, (xn)n∈N in Algorithm 3.1 converges to the unique
solution to Problem 1.2.

Let us compare HSDM [40] with Algorithm 3.1. The sequence, (xn)n∈N,
generated by HSDM is

xn+1 := Q(xn)− αn∇f(Q(xn)) (n ∈ N),

where (αn)n∈N ⊂ (0,∞) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. The-
orem 4 in [40] guarantees that HSDM converges to the unique solution to
Problem 1.2 when T := I and Q is quasi-nonexpansive if x̄ ∈ Fix(Q) and

10Examples satisfying Conditions (i)-(iii) are αn := 1/(n + 1)a and βn := b (n ∈ N),
where a ∈ (0, 1] and b ∈ (0, 1).
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µ̄ ∈ (0, 2c/L2) exist such that Q is quasi-shrinking11 on Bx̄(ρ(x0)) := {x ∈
RS : ∥x−x̄∥ ≤ ρ(x0)}, where ρ(x0) := max{∥µ̄∇f(x̄)∥/τ, ∥x0−x̄∥,maxαn>µ̄ ∥xn−
x̄∥} and τ := 1 −

√
1− µ̄(2c− µ̄L2) ∈ (0, 1]. It would be difficult to check

for the existence of Bx̄(ρ(x0)) on which Q is quasi-shrinking before execut-
ing HSDM. Hence, HSDM will not converge even in Fix(Q) when Q is only
quasi-nonexpansive.

Meanwhile, Theorem 3.1 in this paper guarantees that Algorithm 3.1 con-
verges to the unique solution to Problem 1.2 when T is nonexpansive and
Q is quasi-firmly nonexpansive and fixed-point closed. Therefore, we can
conclude that Algorithm 3.1 does not require us to check whether compli-
cated assumptions, such as the existence of Bx̄(ρ(x0)), are satisfied or not in
advance, and it can solve Problem 1.2, which HSDM cannot solve.

3.1. Proof of Theorem 3.1

We shall prove Theorem 3.1 by referring to the proof of [27, Theorem
3.1]. We first prove the following:

Lemma 3.1. Suppose that the assumptions of Theorem 3.1 hold. Then,
(xn)n∈N, (yn)n∈N, and (∇f(Qα(xn)))n∈N are bounded.

Proof. Let x ∈ Fix(T ) ∩ Fix(Q) be arbitrarily fixed. Lemma 2.2, the quasi
nonexpansivity of Qα, and Fix(Q) = Fix(Qα) (Lemma 2.1(i), (ii)) mean that,
for all n ∈ N,

∥yn − x∥ = ∥Qα (xn)− µαn∇f (Qα (xn))− x∥
≤ ∥(Qα (xn)− µαn∇f (Qα (xn)))− (x− µαn∇f (x))∥
+ µαn ∥∇f (x)∥

≤ (1− ταn) ∥Qα (xn)− x∥+ µαn ∥∇f (x)∥
≤ (1− ταn) ∥xn − x∥+ µαn∥∇f(x)∥,

where τ := 1 −
√
1− µ(2c− µL2) ∈ (0, 1]. Accordingly, for all n ∈ N, we

have

∥yn − x∥ ≤ (1− ταn)∥xn − x∥+ µ∥∇f(x)∥
τ

ταn. (9)

11See [40] for the definition of a quasi-shrinking mapping.
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The triangle inequality, nonexpansivity of T , and (9) ensure that

∥xn+1 − x∥ = ∥βnxn + (1− βn)T (yn)− x∥
≤ βn∥xn − x∥+ (1− βn) ∥T (yn)− x∥
≤ βn∥xn − x∥+ (1− βn) ∥yn − x∥

≤ βn∥xn − x∥+ (1− βn)

{
(1− ταn)∥xn − x∥+ µ∥∇f(x)∥

τ
ταn

}
= (1− τ(1− βn)αn) ∥xn − x∥+ µ∥∇f(x)∥

τ
τ(1− βn)αn.

Induction shows that, for all n ∈ N,

∥xn − x∥ ≤ max

{
∥x0 − x∥, µ∥∇f(x)∥

τ

}
;

that is, (xn)n∈N is bounded. The Lipschitz continuity of ∇f , the quasi nonex-
pansivity ofQα, and the boundedness of (xn)n∈N ensure that (∇f(Qα(xn)))n∈N
is bounded. Inequality (9) and the boundedness of (xn)n∈N imply that (yn)n∈N
is bounded. This completes the proof.

Now let us prove the following lemma.

Lemma 3.2. Let (zn)n∈N ⊂ RS be a bounded sequence with limn→∞ ∥zn −
Q(zn)∥ = 0 and limn→∞ ∥zn−T (zn)∥ = 0.Then, lim infn→∞⟨zn−x⋆,∇f(x⋆)⟩ ≥
0, where x⋆ ∈ Fix(T ) ∩ Fix(Q) stands for the solution to Problem 1.2.

Proof. From the limit inferior of (⟨zn − x⋆,∇f(x⋆)⟩)n∈N, there exists a sub-
sequence (zni

) of (zn)n∈N such that

lim inf
n→∞

⟨zn − x⋆,∇f(x⋆)⟩ = lim
i→∞

⟨zni
− x⋆,∇f(x⋆)⟩ . (10)

Since (zni
)i∈N is bounded, there exists (znij

)j∈N (⊂ (zni
)i∈N) converging to

x̄ ∈ RS. We may assume without loss of generality that (zni
)i∈N converges

to x̄ ∈ RS. The demiclosedness principle [4, Theorem 4.17, Corollary 4.18]
of T guarantees x̄ ∈ Fix(T ). Since Q is quasi-nonexpansive and fixed-point
closed, we also have x̄ ∈ Fix(Q), and hence, x̄ ∈ Fix(T )∩Fix(Q). Therefore,
(10) leads one to deduce that

lim inf
n→∞

⟨zn − x⋆,∇f(x⋆)⟩ = ⟨x̄− x⋆,∇f(x⋆)⟩ ≥ 0, (11)

where the first inequality comes from x⋆ ∈ VI(Fix(T ) ∩ Fix(Q),∇f). This
completes the proof.
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Next, we prove the following lemma.

Lemma 3.3. For all n ∈ N,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 − 2α(1− α)(1− βn)∥Q(xn)− xn∥2

+ 2µ2α2
n(1− βn) ∥∇f (Qα(xn))∥2 − βn(1− βn)∥xn − T (yn)∥2

− 2µαn(1− βn) ⟨xn − x⋆,∇f (Qα(xn))⟩ .

Proof. From −2⟨x, y⟩ = ∥x− y∥2−∥x∥2−∥y∥2 (x, y ∈ RS), we find that, for
all n ∈ N,

2 ⟨yn − xn + µαn∇f(Qα(xn)), xn − x⋆⟩
= −2 ⟨xn − yn, xn − x⋆⟩+ 2µαn ⟨∇f(Qα(xn)), xn − x⋆⟩
= ∥yn − x⋆∥2 − ∥xn − x⋆∥2 − ∥xn − yn∥2 + 2µαn ⟨∇f(Qα(xn)), xn − x⋆⟩ .

Meanwhile, the quasi-firm nonexpansivity of Q and Lemma 2.1(iii) guarantee
that, for all n ∈ N,

2 ⟨xn −Qα(xn), xn − x⋆⟩ ≥ 2(1− α)∥xn −Q(xn)∥2.

Since the definition of yn means that yn−xn+µαn∇f(Qα(xn)) = Qα(xn)−xn

(n ∈ N), we find that, for all n ∈ N,

−2(1− α)∥xn −Q(xn)∥2 ≥ ∥yn − x⋆∥2 − ∥xn − x⋆∥2 − ∥xn − yn∥2

+ 2µαn ⟨∇f(Qα(xn)), xn − x⋆⟩ ,

which means that, for all n ∈ N,

∥yn − x⋆∥2 ≤ ∥xn − x⋆∥2 + ∥xn − yn∥2 − 2(1− α)∥xn −Q(xn)∥2

− 2µαn ⟨∇f(Qα(xn)), xn − x⋆⟩ .
(12)

Moreover, from ∥x− y∥2 ≤ 2∥x∥2 + 2∥y∥2 (x, y ∈ RS),

∥xn − yn∥2 = ∥(xn −Qα(xn)) + µαn∇f (Qα(xn))∥2

≤ 2 ∥xn −Qα(xn)∥2 + 2µ2α2
n ∥∇f (Qα(xn))∥2

= 2(1− α)2 ∥xn −Q(xn)∥2 + 2µ2α2
n ∥∇f (Qα(xn))∥2 .

(13)

Hence, (12) and (13) imply that, for all n ∈ N,

∥yn − x⋆∥2 ≤ ∥xn − x⋆∥2 − 2α(1− α)∥xn −Q(xn)∥2

+ 2µ2α2
n ∥∇f (Qα(xn))∥2 − 2µαn ⟨∇f(Qα(xn)), xn − x⋆⟩ .

(14)
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Since ∥tx+(1− t)y∥2 = t∥x∥2+(1− t)∥y∥2− t(1− t)∥x− y∥2 (x, y ∈ RS, t ∈
[0, 1]), the nonexpansivity of T means that, for all n ∈ N,

∥xn+1 − x⋆∥2

= ∥βn(xn − x⋆) + (1− βn)(T (yn)− x⋆)∥2

= βn∥xn − x⋆∥2 + (1− βn)∥T (yn)− x⋆∥2 − βn(1− βn)∥xn − T (yn)∥2

≤ βn∥xn − x⋆∥2 + (1− βn)∥yn − x⋆∥2 − βn(1− βn)∥xn − T (yn)∥2.

We find from (14) that, for all n ∈ N,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 − 2α(1− α)(1− βn)∥Q(xn)− xn∥2

+ 2µ2α2
n(1− βn) ∥∇f (Qα(xn))∥2 − βn(1− βn)∥xn − T (yn)∥2

− 2µαn(1− βn) ⟨xn − x⋆,∇f (Qα(xn))⟩ .

This completes the proof.

We are now in a position to prove Theorem 3.1.

Proof. Let us consider the case where n0 ∈ N exists such that ∥xn+1−x⋆∥ ≤
∥xn − x⋆∥ for all n ≥ n0. Then, limn→∞ ∥xn − x⋆∥ exists. Lemma 3.3
guarantees that, for all n ∈ N,

2α(1− α)(1− βn)∥xn −Q(xn)∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 +Mαn,

βn(1− βn)∥xn − T (yn)∥2 ≤ ∥xn − x⋆∥2 − ∥xn+1 − x⋆∥2 +Mαn,

where

Mn := 2µ(1− βn)
{
µαn∥∇f(Qα(xn))∥2 − ⟨xn − x⋆,∇f(Qα(xn))⟩

}
(n ∈ N)

and M := supn∈N Mn (M < ∞ holds from Lemma 3.1). Accordingly, (i) and
(iii) in Theorem 3.1 and the existence of limn→∞ ∥xn − x⋆∥ ensure that

lim
n→∞

∥xn −Q(xn)∥ = 0 and lim
n→∞

∥xn − T (yn)∥ = 0. (15)

Moreover, from (13), (15), and (i) in Theorem 3.1, we have

lim
n→∞

∥xn − yn∥ = 0.
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Since the triangle inequality and the nonexpansivity of T ensure that ∥xn −
T (xn)∥ ≤ ∥xn − T (yn)∥ + ∥T (yn) − T (xn)∥ ≤ ∥xn − T (yn)∥ + ∥yn − xn∥
(n ∈ N), we find

lim
n→∞

∥xn − T (xn)∥ = 0. (16)

Accordingly, Lemmas 3.1 and 3.2, (15), and (16) guarantee that

lim inf
n→∞

⟨xn − x⋆,∇f(x⋆)⟩ ≥ 0. (17)

Lemma 3.3 implies that, for all N ∈ N,
N∑

n=0

αn (−Mn) ≤ ∥x0 − x⋆∥2 − ∥xN+1 − x⋆∥2 ≤ ∥x0 − x⋆∥2 < ∞,

and hence,

∞∑
n=0

αn (−Mn) < ∞.

Assume that lim infn→∞(−Mn) > 0. Then, since there exist n1 ∈ N and
δ > 0 such that −Mn ≥ δ for all n ≥ n1, we have that δαn ≤ αn(−Mn)
(n ≥ n1), which, together with (ii) in Theorem 3.1, means that

∞ = δ
∞∑

n=n1

αn ≤
∞∑

n=n1

αn(−Mn) < ∞.

This is a contradiction. Hence, we find that

lim inf
n→∞

{
−µαn∥∇f(Qα(xn))∥2 + ⟨xn − x⋆,∇f(Qα(xn))⟩

}
≤ 0,

which, together with (i) in Theorem 3.1, implies that

lim inf
n→∞

⟨xn − x⋆,∇f(Qα(xn))⟩ ≤ 0. (18)

The Cauchy-Schwarz inequality and the Lipschitz continuous of ∇f (As-
sumption (A3)) mean that, for all n ∈ N,

⟨xn − x⋆,∇f(xn)⟩ = ⟨xn − x⋆,∇f(xn)−∇f(Qα(xn))⟩
+ ⟨xn − x⋆,∇f(Qα(xn))⟩

≤ L∥xn − x⋆∥∥xn −Qα(xn)∥+ ⟨xn − x⋆,∇f(Qα(xn))⟩.
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Since (15) implies limn→∞ ∥xn−Qα(xn)∥ = (1−α) limn→∞ ∥xn−Q(xn)∥ = 0,
we find from (18) that

lim inf
n→∞

⟨xn − x⋆,∇f(xn)⟩ ≤ 0. (19)

On the other hand, the strong monotonicity of ∇f (Assumption (A3)) en-
sures the existence of c > 0 such that, for all n ∈ N,

c ∥xn − x⋆∥2 ≤ ⟨xn − x⋆,∇f(xn)⟩ − ⟨xn − x⋆,∇f(x⋆)⟩ . (20)

Therefore, from (17), (19), and (20),

c lim
n→∞

∥xn − x⋆∥2 ≤ c lim
n→∞

∥xn − x⋆∥2 + lim inf
n→∞

⟨xn − x⋆,∇f(x⋆)⟩

= lim inf
n→∞

{
c ∥xn − x⋆∥2 + ⟨xn − x⋆,∇f(x⋆)⟩

}
≤ lim inf

n→∞
⟨xn − x⋆,∇f(xn)⟩

≤ 0,

which implies that (xn)n∈N converges to x⋆.
Next, we define Γn := ∥xn − x⋆∥2 (n ∈ N) and consider the case where

(Γnj
)j∈N (⊂ (Γn)n∈N) exists such that Γnj

< Γnj+1 for all j ∈ N. Then,
Lemma 2.3 implies that n2 ∈ N exists such that Γτ(n) < Γτ(n)+1 (n ≥ n2),
where τ(n) is as in Lemma 2.3. A discussion in the same manner as in the
proof of (15) and (16) leads us to

lim
n→∞

∥∥xτ(n) − T
(
xτ(n)

)∥∥ = 0 and lim
n→∞

∥∥xτ(n) −Q
(
xτ(n)

)∥∥ = 0. (21)

Moreover, Lemma 3.3 and Γτ(n) < Γτ(n)+1 (n ≥ n2) guarantee that, for
all n ≥ n2, 0 ≤ Γτ(n) − Γτ(n)+1 + ατ(n)Mτ(n) < ατ(n)Mτ(n), and hence,
µατ(n)∥∇f(Qα(xτ(n)))∥2 − ⟨xτ(n) − x⋆,∇f(Qα(xτ(n)))⟩ > 0 (n ≥ n2). There-
fore, for all n ≥ n2,⟨

xτ(n) − x⋆,∇f
(
Qα

(
xτ(n)

))⟩
< µατ(n)

∥∥∇f
(
Qα

(
xτ(n)

))∥∥2
. (22)

A discussion in the same manner as in the proof of (19) leads us to⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
≤ L(1− α)

∥∥xτ(n) − x⋆
∥∥∥∥xτ(n) −Q

(
xτ(n)

)∥∥
+
⟨
xτ(n) − x⋆,∇f

(
Qα

(
xτ(n)

))⟩
,
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which, together with (22), implies that⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
< L(1− α)

∥∥xτ(n) − x⋆
∥∥∥∥xτ(n) −Q

(
xτ(n)

)∥∥
+ µατ(n)

∥∥∇f
(
Qα

(
xτ(n)

))∥∥2
.

Thus, from (20), we find that, for all n ≥ n2,

cΓτ(n) ≤
⟨
xτ(n) − x⋆,∇f

(
xτ(n)

)⟩
−

⟨
xτ(n) − x⋆,∇f(x⋆)

⟩
< L(1− α)

∥∥xτ(n) − x⋆
∥∥∥∥xτ(n) −Q

(
xτ(n)

)∥∥+
⟨
x⋆ − xτ(n),∇f(x⋆)

⟩
+ µατ(n)

∥∥∇f
(
Qα

(
xτ(n)

))∥∥2
.

Accordingly, (i) in Theorem 3.1, (21), and Lemma 3.2 lead us to

c lim sup
n→∞

Γτ(n) ≤ lim sup
n→∞

⟨
x⋆ − xτ(n),∇f(x⋆)

⟩
≤ 0,

which means that limn→∞ Γτ(n) = 0. Moreover, since Lemma 2.3 guarantees
that limn→∞ Γn = 0, i.e., (xn)n∈N converges to x⋆. This completes the proof.

4. Application of Algorithm 3.1 to Utility-based Bandwidth Allo-
cation Problem with Operational Constraints

In this section, we apply Algorithm 3.1 with T := Tproj in (4), Q :=
Qsp in (6), and α := 1/2 to the utility-based allocation problem (Prob-
lem 1.1) on a simple network (Fig.1) that consists of two links and three
sources. We will consider the case where the utility function is a proportion-
ally fair (PF) function [23, 30, 36] defined by Upf(x1, x2, x3) :=

∑3
s=1ws log xs

((x1, x2, x3)
T ∈ R3

+\{0}) with ws := 1 (s = 1, 2, 3). To see whether the
first fixed point optimization algorithm, called the hybrid steepest descent
method (HSDM) [40], converges or not, we can try to apply HSDM to Prob-
lem 1.1. HSDM is defined by xn+1 := Q(xn) + αn∇Upf(Q(xn)) (n ∈ N),
where Q is quasi-nonexpansive and quasi-shrinking and (αn)n∈N satisfies
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Meanwhile, (zn)n∈N defined by zn+1 :=

λnzn + (1− λn)T1(T2(zn)) (n ∈ N) converges to a point in Fix(T1)∩Fix(T2),
where (λn)n∈N ⊂ [0, 1] satisfies

∑∞
n=1 λn(1 − λn) = ∞, z1 ∈ RS, and T1 and

T2 are nonexpansive with Fix(T1) ∩ Fix(T2) ̸= ∅ [4, Corollary 4.37, Theorem
5.14]. Since C∩Cop = Fix(Tproj)∩Fix(Qsp) ̸= ∅, we can use TprojQsp to find a
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point in Fix(Tproj)∩Fix(Qsp). Hence, we can replace HSDM for optimization
problems over Fix(Qsp) by

xn+1 := Tproj(Qsp(xn)) + αn∇Upf(Tproj(Qsp(xn))) (23)

to enable us to consider optimization problems over Fix(Tproj) ∩ Fix(Qsp).
From the above discussion, we can expect that HSDM defined by (23) con-
verges to a point in Fix(Tproj) ∩ Fix(Qsp) and solves Problem 1.1. We chose
five random initial points and executed Algorithm 3.1 and HSDM defined by
(23) for chosen initial points. The following graphs plot the mean values of
the fifth execution. The computer used in the experiment had an Intel Boxed
Core i7 i7-870 2.93 GHz 8M CPU and 8 GB of memory. The language was
MATLAB 7.13. In the experiments, we used µ := 1/102, αn := 1/(n+ 1)0.5,
and βn := 1/2 (n ∈ N) in Algorithm 3.1. Theorem 3.1 guarantees that
Algorithm 3.1 converges to a unique solution to Problem 1.1.

To check whether Algorithm 3.1 and HSDM defined by (23) converge
in the constraint set, C ∩ Cop = Fix(Tproj) ∩ Fix(Qsp), in Problem 1.1, we
employed the following evaluation function:

Dn := ∥xn − Tproj(xn)∥+ ∥xn −Qsp(xn)∥

=
∥∥∥xn − PR3

+
(PC1 (PC2(xn)))

∥∥∥+


|P(xn)− p|
∥P ′(xn)∥

if P(xn) > p,

0 otherwise,

where xn ∈ R3 is the nth approximation to the solution. Since any x with
∥x − Tproj(x)∥ = 0 (resp. ∥x − Qsp(x)∥ = 0) satisfies x ∈ Fix(Tproj) =
C := R3

+ ∩ C1 ∩ C2 (resp. x ∈ Fix(Qsp) = Cop := {x ∈ R3 : P(x) ≤ p}),
the convergence of (Dn)n∈Ns to 0 implies that the algorithms converge in
C ∩ Cop. In the experiment, we used P(x) := P(x1) (x1 ∈ R) defined
by 2x1 − (7/2)x0 (x1 ≥ (3/2)x0), or x1 − 2x0 (x0 < x1 < (3/2)x0), or
−x0 (x1 ≤ x0), x0 := 0.1, and p := 2. We can verify that the optimal
solution maximizing Upf(x) :=

∑3
s=1 log xs over C is x∗ ≈ (3.8, 1.8, 1.2)T .

By using Cop := {(x1, x2, x3)
T ∈ R3 : P(x1) ≤ p}, the operator can decrease

the optimal transmission rate of source 1 from x∗
1 ≈ 3.8 to (7/4)x0 + (1/2)p

(= 1.175), and hence, the transmission rate of source 3 becomes larger than
the previous x∗

3 ≈ 1.2. Therefore, the operational policy using P(x1) is that
the operator tries to decrease the transmission rate of source 1 sharing link
1 in order to increase the transmission rate of source 3 sharing link 1.
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Link 1 Link 2

Source 1 Source 2

Source 3

Figure 1: Network with two links and three sources with c1 :=
5, c2 := 3 (Cl := {(x1, x2, x3)

T ∈ R3 : xl + x3 ≤ cl} (l = 1, 2)).

Figure 2 plots the behaviors of Dn := ∥xn − Tproj(xn)∥+ ∥xn −Qsp(xn)∥
(n = 1, 2, . . . , 100) for Algorithm 3.1 (Proposed) and HSDM defined by (23).
Note that, if the (Dn)n∈Ns converge to 0, the algorithms converge in the
constraint set in Problem 1.1. From this figure, we can see that Algorithm
3.1 quickly diminishes the value of Dn and converges in C ∩ Cop, whereas
HSDM diminishes Dn slowly and the D100 it generates is about 10−1.

Figure 3 shows the behaviors of Upf(xn) (n = 1, 2, . . . , 100) and presents
the required iterations of Algorithm 3.1. This figure indicates that Algorithm
3.1 is stable for n ≥ 20. Figures 2 and 3 show that Algorithm 3.1 converges
and finds the unique solution to Problem 1.1 (x⋆

1 ≈ 1.175, x⋆
2 ≈ 1.500, x⋆

3 ≈
1.500), as promised by Theorem 3.1. Meanwhile, these figures show that
HSDM does not converge to the solution because it does not converge in
C ∩ Cop, as seen in Figure 2.

Now, let us compare (i) the PF allocation for all sources under ca-
pacity constraints and an operational constraint with (ii) the PF alloca-
tion for all sources under only the capacity constraints. The allocation
for (i) is (x⋆

1, x
⋆
2, x

⋆
3) ≈ (1.175, 1.500, 1.500), and the allocation for (ii) is

(x∗
1, x

∗
2, x

∗
3) ≈ (3.800, 1.800, 1.200). By using the operational constraint set,
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Figure 2: Behavior of Dn := ∥xn−Tproj(xn)∥+∥xn−Qsp(xn)∥
(n = 1, 2, . . . , 100).

Cop := {(x1, x2, x3)
T ∈ R3 : P(x1) ≤ p}, to limit the transmission rate of

source 1, the operator can decrease the transmission rate of source 1 from
x∗
1 ≈ 3.800 to x⋆

1 ≈ 1.175 and increase the transmission rate of source 3
from x∗

3 ≈ 1.200 to x⋆
3 ≈ 1.500. This is because sources 1 and 3 share

the same link 1 and have the same utility function U1(x) = U3(x) := log x
(x ∈ R+\{0}), and decreasing the transmission rate of source 1 results in an
increase in the transmission rate of source 3. Source 3 cannot send data by
c1−x⋆

1 ≈ 3.825 because it shares link 2 with capacity c2 := 3. Since sources 2
and 3 share link 2 and have the same utility function U2(x) = U3(x) := log x
(x ∈ R+\{0}), the optimal transmission rates of sources 2 and 3 satisfy
x⋆
2 = x⋆

3 and x⋆
2 + x⋆

3 = c2, i.e., x
⋆
2, x

⋆
3 = 1.500.

Algorithm 3.1 with a slowly diminishing sequence can solve the network
bandwidth allocation problem with a concave utility function, while HSDM
does not always converge in the constraint set of the network bandwidth allo-
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Figure 3: Behavior of Upf(x) :=
∑3

s=1 log xs.

cation problem. The above observations suggest that the proposed algorithm
is a more efficient way of solving network bandwidth allocation problems
under capacity constraints and operational constraints in comparison with
existing algorithms such as HSDM.

5. Conclusion

This paper discussed the variational inequality problem over the intersec-
tion of the fixed point sets of a nonexpansive mapping and quasi-nonexpansive
mapping, including the network bandwidth allocation problem under capac-
ity and operational constraints. To solve the problem, we devised a fixed
point optimization algorithm based on iterative techniques for optimization
over the fixed point sets of nonexpansive mappings and presented its con-
vergence analysis. We applied the algorithm to the network bandwidth allo-
cation problem and compared it with an existing algorithm. The numerical
comparisons showed that there is a possibility that the existing algorithm
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does not work for the network bandwidth allocation problems and suggested
that the proposed algorithm is an efficient way to achieve the optimal band-
width allocation.
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[26] P. Maillé and L. Toka, Managing a peer-to-peer data storage system in
a selfish society, IEEE Journal on Selected Areas in Communication, 26
(2008), pp. 1295–1301.
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