
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Unified Algorithm Framework for
Nonconvex Stochastic Optimization in
Deep Neural Networks
YINI ZHU1, HIDEAKI IIDUKA2
1Computer Science Course, Graduate School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan (e-mail: yini@cs.meiji.ac.jp)
2Department of Computer Science, Meiji University, Kanagawa 214-8571, Japan (e-mail: iiduka@cs.meiji.ac.jp)

Corresponding author: Yini Zhu (e-mail: yini@cs.meiji.ac.jp).

This work was supported by JSPS KAKENHI Grant Number 21K11773.

ABSTRACT This paper presents a unified algorithmic framework for nonconvex stochastic optimization,
which is needed to train deep neural networks. The unified algorithm includes the existing adaptive-
learning-rate optimization algorithms, such as Adaptive Moment Estimation (Adam), Adaptive Mean
Square Gradient (AMSGrad), Adam with weighted gradient and dynamic bound of learning rate (GWDC),
AMSGrad with weighted gradient and dynamic bound of learning rate (AMSGWDC), and Adapting
stepsizes by the belief in observed gradients (AdaBelief). The paper also gives convergence analyses of
the unified algorithm for constant and diminishing learning rates. When using a constant learning rate,
the algorithm can approximate a stationary point of a nonconvex stochastic optimization problem. When
using a diminishing rate, it converges to a stationary point of the problem. Hence, the analyses lead to
the finding that the existing adaptive-learning-rate optimization algorithms can be applied to nonconvex
stochastic optimization in deep neural networks in theory. Additionally, this paper provides numerical
results showing that the unified algorithm can train deep neural networks in practice. Moreover, it provides
numerical comparisons for unconstrained minimization using benchmark functions of the unified algorithm
with certain heuristic intelligent optimization algorithms. The numerical comparisons show that a teaching-
learning-based optimization algorithm and the unified algorithm perform well.

INDEX TERMS Adam, adaptive-learning-rate optimization algorithm, AMSGrad, AMSGWDC, deep
neural network, GWDC, heuristic intelligent optimization methods, learning rate, nonconvex stochastic
optimization, stationary point problem.

I. INTRODUCTION

AUSEFUL way to train deep neural networks is to solve
a nonconvex optimization problem in terms of deep

neural networks [1], [2], [3] and find suitable parameters
for them. Many algorithms have been presented to solve
nonconvex optimization problems. The simplest algorithm
for the problem is stochastic gradient descent (SGD) (see,
e.g., [4], [5] for recent studies for SGD). Adaptive-learning-
rate optimization algorithms (see Subsection 8.5 in [6]) are
powerful methods that adapt the learning rates of the model
parameters to solve the problem quickly. Examples include
Adaptive Gradient (AdaGrad) [7], Root Mean Square Prop-
agation (RMSProp) [6, Algorithm 8.5], Adaptive Moment
Estimation (Adam) [8], Adaptive Mean Square Gradient
(AMSGrad) [9], Adam with weighted gradient and dynamic

bound of learning rate (GWDC) [2, Algorithm 2], AMSGrad
with weighted gradient and dynamic bound of learning rate
(AMSGWDC) [2, Algorithm 3], and Adapting stepsizes by
the belief in observed gradients (AdaBelief) [10]. Note that
the existing adaptive-learning-rate optimization algorithms
use the inverses of certain positive-definite matrices at each
iteration; in other words, they are framed depending on the
definitions of such positive-definite matrices.

In this paper, we first show that the positive-definite matri-
ces used in the existing adaptive-learning-rate optimization
algorithms assume common conditions (Assumption III.1).
Next, we present an algorithm [11] (Algorithm 1) for which
convergence is guaranteed under Assumption III.1. This im-
plies that the algorithm is a unification of the existing ones
(see also Example III.1). For the convergence analyses of the

VOLUME 4, 2021 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Convergence rates for SGD and adaptive-learning-rate optimization algorithms (GWDC, AMSGWDC, AdaBelief, and its unified algorithm) on recent
papers published in 2020 and 2021

Algorithm [Ref.] (Authors; year)
Nonconvex optimization Convex optimization

Constant learning rate Diminishing learning rate Constant learning rate Diminishing learning rate

SGD [4] (Scaman et al.; 2020) O
(
1
n

)
+ C O

(
1√
n

)
O
(
1
T

)
+ C O

(
1√
T

)
SGD [5] (Loizou et al.; 2021) —— O

(
1
n

)
+ C —— O

(
1
T

)
+ C

GWDC [2] (Liang et al.; 2020) —— —— —— O
(

1√
T

)
AMSGWDC [2] (Liang et al.; 2020) —— —— —— O

(
1√
T

)
AdaBelief [10] (Zhuang et al.; 2020) —— O

(
logn√

n

)
—— O

(
log T√

T

)
Algorithm 1 [11] (Iiduka; 2021) O

(
1
n

)
+ C1α+ C2β O

(
1√
n

)
O
(
1
T

)
+ C1α+ C2β O

(
1√
T

)
The convergence rate of nonconvex (resp. convex) optimization is measured by mink=1,2,...,n E[‖∇f(xk)‖2] (resp.R(T )/T ), where n denotes the number
of iterations and T denotes the number of training samples (see Table 2 for the definitions of the notation). C and Ci (i = 1, 2) are constants that are
independent of n, T , and the constant learning rates α and β. A diminishing learning rate is αn = 1/

√
n.

algorithm, we use constant and diminishing learning rates.
We show that, for a constant learning rate, the algorithm can
approximate a stationary point of the nonconvex stochastic
optimization problem (Theorem III.1), while for a diminish-
ing rate, it converges to a stationary point of the problem
(Theorem III.2). Table 1 summarizes convergence rate results
of SGD and adaptive-learning-rate optimization algorithms
for nonconvex and convex optimization that were studied in
2020 and 2021.

Our first contribution is to provide convergence analyses of
the existing adaptive-learning-rate optimization algorithms,
i.e., analyses which could not be done using the methods in
[2], [4], [5], [8], [9], [10]. The previously reported results
(see, e.g., [2], [8], [9]) tried to minimize the regret (see Table
2 for the definition) for convex optimization. However, regret
minimization does not always lead to solutions of optimiza-
tion problems in deep learning (Subsection IV-E). In contrast
to the previous results, this paper explicitly shows that the
existing adaptive-learning-rate optimization algorithms can
solve such problems (Subsections IV-A–IV-D). For non-
convex optimization, AdaBelief [10] has an O(log n/

√
n)

convergence rate, where n denotes the number of iterations
(see Table 1). Theorem III.2 ensures that using a diminishing
learning rate αn = 1/

√
n allows the proposed algorithm

(Algorithm 1) including AdaBelief to have anO(1/
√
n) con-

vergence rate (see also [11]). While GWDC and AMSGWDC
[2] with diminishing learning rates can only be applied to
convex optimization (see Table 1), the proposed algorithm
(Algorithm 1) can be applied to both convex and nonconvex
optimization (see Table 1).

In particular, we would like to emphasize that the existing
algorithms with constant learning rates can be applied to the
problem (Subsection IV-E and Table 1). The results for a
constant learning rate are significant from the viewpoints of
both theory and practice, since algorithms with a constant
learning rate work well whereas the algorithms with a di-
minishing rate converging to zero do not work. Moreover,
we also would like to emphasize that not only Adam and
AMSGrad but also GWDC and AMSGWDC can be applied

to the problem. This is in contrast to [2], which presented
a regret minimization only for GWDC and AMSGWDC
with a diminishing learning rate, and [11], which presented
convergence analyses only for Adam and AMSGrad for con-
stant and diminishing learning rates. Using constant learning
rates allows Algorithm 1 for nonconvex optimization to have
approximately an O(1/n) convergence rate (see Table 1).

The second contribution of this paper is to show that the
algorithm with a constant learning rate tends to be superior
for training neural networks, while the one with a diminish-
ing rate tends not to be good for training neural networks.
Here, we focus on image classification using several neural
networks and show the effectiveness of the algorithm with
a constant learning rate (Subsections V-A–V-B). Moreover,
we consider unconstrained optimization in [12] and provide
numerical comparisons for Algorithm 1 with heuristic intel-
ligent optimization algorithms, such as the genetic algorithm
(GA), particle swarm optimization (PSO), biogeography-
based optimization (BBO), an Atom search optimization
(ASO), and a teaching-learning-based optimization (TLBO).
The numerical comparisons show that, in particular, TLBO
and Algorithm 1 perform well (Subsection V-C).

This paper is organized as follows. Section II states the
main problem. Section III presents the proposed algorithm
for solving the main problem and analyzes its convergence.
Section IV compares the analyses in Section III with the
ones in the previous reports. Section V numerically compares
the behaviors of the proposed algorithm with those of the
existing ones. Section VI concludes the paper with a brief
summary.

II. OPTIMIZATION IN DEEP NEURAL NETWORKS
The notation used in this paper is summarized in Table 2.

In general, an optimization problem in a deep neural
network can be expressed as the following nonconvex opti-
mization problem:

Problem II.1 Assume that

(A1) X ⊂ Rd is a nonempty, closed convex set onto which
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TABLE 2. Notation List

Notation Description

N The set of all positive integers and zero
Rd A d-dimensional Euclidean space with inner product 〈·, ·〉, which induces the norm ‖ · ‖
Rd
+ Rd

+ := {x = (xi) ∈ Rd : xi ≥ 0 (i = 1, 2, . . . , d)}
Rd
++ Rd

++ := {x = (xi) ∈ Rd : xi > 0 (i = 1, 2, . . . , d)}
Sd The set of d× d symmetric matrices, i.e., Sd = {M ∈ Rd×d : M = M>}
Sd++ The set of d× d symmetric positive-definite matrices, i.e., Sd++ = {M ∈ Sd : M � O}
Dd The set of d× d diagonal matrices, i.e., Dd = {M ∈ Rd×d : M = diag(xi), xi ∈ R (i = 1, 2, . . . , d)}

A�B The Hadamard product of matrices A and B (x� x := (x2i ) ∈ Rd (x := (xi) ∈ Rd))
〈x,y〉H The H-inner product of Rd, where H ∈ Sd++, i.e., 〈x,y〉H := 〈x, Hy〉
‖x‖2H The H-norm, where H ∈ Sd++, i.e., ‖x‖2H := 〈x, Hx〉
PX The metric projection onto a nonempty, closed convex set X (⊂ Rd)

PX,H The metric projection onto X under the H-norm
E[Y ] The expectation of a random variable Y
ξ A random vector whose probability distribution P is supported on a set Ξ ⊂ Rd1

F (·, ξ) A function from Rd to R that is continuously differentiable for all ξ ∈ Ξ

f The objective function defined by f(x) := E[F (x, ξ)] for all x ∈ Rd

∇f The gradient of f
G(x, ξ) The stochastic gradient for a given (x, ξ) ∈ Rd × Ξ which satisfies E[G(x, ξ)] = ∇f(x)

X? The set of stationary points of the problem of minimizing f over X
f? The optimal objective function value for the problem of minimizing f over X
R(T ) The regret on a sequence (

∑T
t=1 ft(xt)) defined by R(T ) :=

∑T
t=1 ft(xt)− f?

yn = O(xn) There exist c ∈ R and n0 ∈ N such that, for all n ≥ n0, yn ≤ cxn, where (xn)n∈N, (yn)n∈N ⊂ R+

the projection can be easily computed;
(A2) f : Rd → R, which is defined for all x ∈ Rd by

f(x) := E[F (x, ξ)], is well defined, where F (·, ξ) is
continuously differentiable for almost every ξ ∈ Ξ,
where ξ ∈ Ξ is a random vector whose probability
distribution P is supported on a set Ξ ⊂ Rd1 .

Thus, we would like to find a minimizer of f over X , i.e.,

x? ∈ argmin
x∈X

f(x).

Even if Problem II.1 is deterministic, i.e., F does not
depend on ξ, the existing algorithms, such as the steepest
descent method, Newton method, quasi-Newton methods,
and conjugate gradient methods, can find a stationary point
for the problem of minimizing f over X . From this fact,
we will focus on the following stationary point problem [11]
associated with Problem II.1:

Problem II.2 Under (A1) and (A2), we would like to find a
stationary point x? of Problem II.1, i.e.,

x? ∈ X? := {x? ∈ X : 〈x− x?,∇f(x?)〉 ≥ 0 (x ∈ X)} .

The relationships between Problems II.1 and II.2 are as
follows:
(F1) argminx∈X f(x) ⊂ X?;
(F2) argminx∈X f(x) ⊃ X? when f is convex, i.e.,

argminx∈X f(x) = X?.
We also have that X? = {x? ∈ Rd : ∇f(x?) = 0} when
X = Rd.

We will consider Problem II.2 under the following condi-
tions.

(C1) There is an independent and identically distributed
sample ξ0, ξ1, . . . of realizations of the random vector
ξ;

(C2) There is an oracle which, for a given input point
(x, ξ) ∈ Rd × Ξ, returns a stochastic gradient G(x, ξ)
such that E[G(x, ξ)] = ∇f(x);

(C3) There exists a positive numberM such that, for all x ∈
X , E[‖G(x, ξ)‖2] ≤M2.

III. ADAPTIVE-LEARNING-RATE OPTIMIZATION
ALGORITHM
Algorithm 1 [11] is a unified algorithm for the existing
adaptive-learning-rate optimization algorithms to solve Prob-
lem II.2 under (C1)–(C3).

Algorithm 1 Adaptive-learning-rate optimization algorithm
for Problem II.2
Require: (αn)n∈N ⊂ (0, 1), (βn)n∈N ⊂ [0, 1), γ ∈ [0, 1)

1: n← 0, x0,m−1 ∈ Rd, H0 ∈ Sd++ ∩ Dd
2: loop
3: mn := βnmn−1 + (1− βn)G(xn, ξn)

4: m̂n :=
mn

1− γn+1

5: Hn ∈ Sd++ ∩ Dd
6: Find dn ∈ Rd that solves Hnd = −m̂n

7: xn+1 := PX,Hn
(xn + αndn)

8: n← n+ 1
9: end loop

We need the following conditions to analyze Algorithm 1.
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Assumption III.1 The sequence (Hn)n∈N ⊂ Sd++ ∩ Dd,
denoted by Hn := diag(hn,i), in Algorithm 1 satisfies the
following conditions:
(A3) hn+1,i ≥ hn,i almost surely for all n ∈ N and all i =

1, 2, . . . , d;
(A4) For all i = 1, 2, . . . , d, a positive numberBi exists such

that sup{E[hn,i] : n ∈ N} ≤ Bi.
Moreover,
(A5) D := maxi=1,2,...,d sup{(xi − yi)

2 : (xi), (yi) ∈
X} < +∞.

Assumption (A5) holds under the boundedness condition
of X , which is assumed in Theorem 4.1 in [8], [9], (A5) in
[11]. We call Algorithm 1 an adaptive-learning-rate optimiza-
tion algorithm (see Subsection 8.5 in [6]) since Algorithm 1
under (A3) and (A4) reduces to the previous algorithms that
assume (A5).

Example III.1
(i) Adam [8]: Let us consider Hn and vn (n ∈ N), which

are defined for all n ∈ N by

vn := δvn−1 + (1− δ)G(xn, ξn)� G(xn, ξn),

v̄n :=
vn

1− δn+1
,

v̂n = (v̂n,i) := (max{v̂n−1,i, v̄n,i}) ,

Hn := diag
(√

v̂n,i

)
,

(1)

where v−1 = v̂−1 = 0 ∈ Rd and δ ∈ [0, 1). Hn and
vn defined by (1) satisfy (A3) and (A4) (see Section III
in [11]). Hence, Algorithm 1 with (1) is based on the
Adam algorithm.1

(ii) AMSGrad [9]: Let us consider Hn and vn (n ∈ N),
which is defined for all n ∈ N by

vn := δvn−1 + (1− δ)G(xn, ξn)� G(xn, ξn),

v̂n = (v̂n,i) := (max{v̂n−1,i, vn,i}) ,

Hn := diag
(√

v̂n,i

)
,

(2)

where v−1 = v̂−1 = 0 ∈ Rd and δ ∈ [0, 1). Hn
and vn, which are defined by (2), satisfy (A3) and (A4)
(see Section III in [11]). Algorithm 1 with (2) is the
AMSGrad algorithm [9].

(iii) GWDC [2]: Suppose that (ln)n∈N ⊂ R++ is monotone
increasing and (un)n∈N ⊂ R++ is monotone decreas-
ing with ln ≤ un for all n ∈ N. Let us consider Hn and
vn (n ∈ N), which is defined for all n ∈ N by

vn := δvn−1 + (1− δ)G(xn, ξn)� G(xn, ξn),

v̂n = (v̂n,i) :=

(
Clip

(
1
√
vn,i

, ln, un

)−1)
,

Hn := diag
(√

v̂n,i

)
,

(3)

1Adam uses Hn = diag(v̄
1/2
n,i ). We use v̂n = (v̂n,i) :=

(max{v̂n−1,i, v̄n,i}) in (1) so as to satisfy (A3). The modification of Hn

defined by diag(v̂
1/2
n,i + ε) guarantees that hn,i 6= 0, where ε > 0 [8].

where v−1 = 0 ∈ Rd, δ ∈ [0, 1), and
Clip(·, l, u) : R→ R (l, u ∈ R with l ≤ u are given) is
defined for all x ∈ R by

Clip(x, l, u) :=


l if x < l,

x if l ≤ x ≤ u,
u if x > u.

Obviously, Hn and vn, which is defined by (3), satisfy
(A3) (see also (13) in [2]). Moreover, we have that, for
all n ∈ N, l0 ≤ ln ≤ Clip(1/

√
vn,i, ln, un) ≤ un ≤

u0, which implies that (A4) holds. Algorithm 1 with
(3) is the GWDC algorithm (see Algorithm 2 in [2]).

(iv) AMSGWDC [2]: Suppose that (ln)n∈N and (un)n∈N
satisfy the same conditions as in (iii). Let us consider
Hn and vn (n ∈ N), which are defined for all n ∈ N by

vn := δvn−1 + (1− δ)G(xn, ξn)� G(xn, ξn),

v̂n = (v̂n,i) := (max{v̂n−1,i, vn,i}) ,

ṽn = (ṽn,i) :=

Clip

(
1√
v̂n,i

, ln, un

)−1 ,

Hn := diag
(√

ṽn,i

)
,

(4)

where v−1 = v̂−1 = 0 ∈ Rd and δ ∈ [0, 1).
From Example III.1(ii) and (iii), Hn and vn, which are
defined by (4), satisfy (A3) and (A4). Algorithm 1 with
(4) is the AMSGWDC algorithm (see Algorithm 3 in
[2]).

A. CONVERGENCE ANALYSIS OF ALGORITHM 1 WITH
A CONSTANT LEARNING RATE
The following is the convergence analysis of Algorithm 1
with a constant learning rate. The proof of Theorem III.1 is
given in the proof of Theorem 1 in [11].

Theorem III.1 Suppose that (A1)–(A5) and (C1)–(C3) hold
and (xn)n∈N is the sequence generated by Algorithm 1 with
αn := α and βn := β (n ∈ N). Then, for all x ∈ X ,

lim sup
n→+∞

E [〈x− xn,∇f(xn)〉] ≥ − B̃
2M̃2

2b̃γ̃2
α− M̃

√
Dd

b̃γ̃
β,

max
k=1,2,...,n

E [〈x− xn,∇f(xn)〉] ≥ −O
(

1

n

)
− C1α− C2β,

where γ̃ := 1− γ, b̃ := 1− β, M̃2 := max{‖m−1‖2,M2},
D is defined as in (A5), B̃ := sup{maxi=1,2,...,d h

−1/2
n,i : n ∈

N} < +∞, and Ci (i = 1, 2) are positive constants that are
independent of n, α, and β.

The following proposition (see also [11, Proposition 1])
enables us to compare Algorithm 1 with Adam [8], AMS-
Grad [9], GWDC [2], and AMSGWDC [2].

Proposition III.1 Suppose that (A1)–(A5) and (C1)–(C3)
hold, F (·, ξ) is convex for almost every ξ ∈ Ξ, and (xn)n∈N

4 VOLUME 4, 2021



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is the sequence generated by Algorithm 1 with αn := α and
βn := β (n ∈ N). Then,

lim inf
n→+∞

E [f(xn)− f?] ≤ B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β,

where f? denotes the optimal value of Problem II.1 (see
(F2)), and γ̃, b̃, M̃ , D, and B̃ are defined as in Theorem III.1.
Additionally, for the regret on a sequence of F (·, t) := ft(·)
(t = 1, 2, . . . , T ), Algorithm 1 satisfies

R(T )

T
≤ O

(
1

T

)
+ C1α+ C2β.

B. CONVERGENCE ANALYSIS OF ALGORITHM 1 WITH
A DIMINISHING LEARNING RATE
The following is a convergence analysis of Algorithm 1 with
a diminishing sub-learning rate. The proof of Theorem III.2
is given in the proof of Theorem 2 in [11].

Theorem III.2 Suppose that (A1)–(A5) and (C1)–(C3) hold
and (xn)n∈N is the sequence generated by Algorithm 1
with αn and βn (n ∈ N) satisfying

∑+∞
n=0 αn = +∞,∑+∞

n=0 α
2
n < +∞, and

∑+∞
n=0 αnβn < +∞. Then, for all

x ∈ X ,

lim sup
n→+∞

E [〈x− xn,∇f(xn)〉] ≥ 0.

Moreover, if αn := 1/nη (η ∈ [1/2, 1)) and if βn := λn (λ ∈
(0, 1)), then Algorithm 1 achieves the following convergence
rate:

max
k=1,2,...,n

E [〈x− xk,∇f(xk)〉] ≥ −O
(

1

n1−η

)
.

The following proposition (see also [11, Proposition 2])
enables us to compare Algorithm 1 with Adam [8], AMS-
Grad [9], GWDC [2], and AMSGWDC [2].

Proposition III.2 Suppose that (A1)–(A5) and (C1)–(C3)
hold, F (·, ξ) is convex for almost every ξ ∈ Ξ, and (xn)n∈N
is the sequence generated by Algorithm 1 with αn := 1/nη

and βn := λn (n ∈ N), where η ∈ [1/2, 1] and λ ∈ (0, 1).
Then, under η ∈ (1/2, 1],

lim inf
n→+∞

E [f(xn)− f?] = 0,

where f? denotes the optimal value of the problem of mini-
mizing f overX . Moreover, under η ∈ [1/2, 1), any accumu-
lation point of (x̃n)n∈N defined by x̃n := (1/n)

∑n
k=1 xk

almost surely belongs to X? = argminx∈X f(x), and Algo-
rithm 1 achieves the following convergence rate:

E [f(x̃n)− f?] = O
(

1

n1−η

)
.

Additionally, for the regret on a sequence of F (·, t) := ft(·)
(t = 1, 2, . . . , T ), Algorithm 1 satisfies

R(T )

T
≤ O

(
1

T 1−η

)
.

IV. COMPARISON OF OUR CONVERGENCE ANALYSES
WITH CONVERGENCE ANALYSES ON EXISTING
ALGORITHMS
To compare the previously reported results in [2], [8], [9]
with the results in Section III, we will consider Problem II.1
when ft(·) := F (·, t) (t = 1, 2, . . . , T ) is convex (see, e.g.,
[2, p.110932]), i.e.,

Find x? ∈ argmin
x∈X

T∑
t=1

ft(x)︸ ︷︷ ︸
Tf(x)

. (5)

See [11, Table II] and Table 1 for comparisons of SGD
[4], AMSGrad [13], AdaBelief [10], and Algorithm 1 for
nonconvex optimization. Since f is convex, (F2) implies that
X? = argminx∈X

∑T
t=1 ft(x). The performance measure

used for the previously reported results in [2], [8], [9] is the
regret R(T ).

A. COMPARISON OF ADAM WITH ALGORITHM 1 IN THE
CASE OF EXAMPLE III.1(I)

Theorem 4.1 in [8] indicates that Adam with αn = O(1/
√
n)

and βn = λn (λ ∈ (0, 1)) ensures that there exists a positive
real number D such that

R(T )

T
=

1

T

T∑
t=1

ft(xt)−
f?

T
≤ D√

T
. (6)

Unfortunately, Theorem 1 in [9] shows that a counter-
example to Theorem 4.1 in [8] exists. Meanwhile, Algorithm
1 with (1) resembles the Adam algorithm (see Footnote 1 for
details). Proposition III.2 indicates that Algorithm 1 with (1),
η = 1/2, and βn = λn satisfies

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
= O

(
1√
T

)
,

R(T )

T
≤ O

(
1√
T

)
.

This implies that Algorithm 1 based on Adam achieves an
O(1/

√
T ) convergence rate, which could not be done using

the analysis in [8].

B. COMPARISON OF AMSGRAD WITH ALGORITHM 1 IN
THE CASE OF EXAMPLE III.1(II)

Theorem 4 in [9] indicates that AMSGrad with αn =
O(1/

√
n) and βn = λn (λ ∈ (0, 1)) ensures that there exists

a positive real number D̂ such that

R(T )

T
=

1

T

T∑
t=1

ft(xt)−
f?

T
≤ D̂

√
1 + lnT

T
. (7)
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Example III.1(ii) shows that Algorithm 1 with (2) coincides
with AMSGrad. Proposition III.2 indicates that Algorithm 1
with (2), η = 1/2, and βn = λn (i.e., AMSGrad) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
= O

(
1√
T

)
,

R(T )

T
≤ O

(
1√
T

)
.

This implies that AMSGrad can achieve an O(1/
√
T ) con-

vergence rate, which is better than O(
√

(1 + lnT )/T ) (see
(7)).

C. COMPARISON OF GWDC WITH ALGORITHM 1 IN
THE CASE OF EXAMPLE III.1(III)
Inequality (15) in [2] indicates that GWDC with αn =
O(1/

√
n) and βn = β̂e−β̃n (β̂ ∈ {0.9, 0.99}, β̃ ∈ (0, 1))

ensures that there exists a positive real number D̃ such that

R(T )

T
=

1

T

T∑
t=1

ft(xt)−
f?

T
≤ D̃√

T
. (8)

Example III.1(iii) shows that Algorithm 1 with (3) coincides
with GWDC. Proposition III.2 indicates that Algorithm 1
with (3), η = 1/2, and βn = β̂e−β̃n (i.e., GWDC) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
= O

(
1√
T

)
,

R(T )

T
≤ O

(
1√
T

)
.

D. COMPARISON OF AMSGWDC WITH ALGORITHM 1 IN
THE CASE OF EXAMPLE III.1(IV)
Appendix B in [2] indicates that AMSGWDC with αn =
O(1/

√
n) and βn = β̂e−β̃n (β̂ ∈ {0.9, 0.99}, β̃ ∈ (0, 1))

ensures that there exists a positive real number D̄ such that

R(T )

T
=

1

T

T∑
t=1

ft(xt)−
f?

T
≤ D̄√

T
. (9)

Example III.1(iv) shows that Algorithm 1 with (4) coincides
with AMSGWDC. Proposition III.2 indicates that Algorithm
1 with (4), η = 1/2, and βn = β̂e−β̃n (i.e., AMSGWDC)
satisfies

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
= O

(
1√
T

)
,

R(T )

T
≤ O

(
1√
T

)
.

E. DISCUSSION
First of all, we would like to emphasize that regret minimiza-
tion does not always lead to solutions of problem (5) (see
also [14]). This is because, even if (xt)

T
t=1 is satisfied, for a

sufficiently large number T ,

R(T )

T
=

1

T

T∑
t=1

ft(xt)−
f?

T
≈ 0,

we do not have that

f(xT )− f?

T
=

1

T

T∑
t=1

ft(xT )− f?

T
≈ 0.

Accordingly, from only (6), (7), (8), and (9), we cannot eval-
uate whether or not the output xT generated by the existing
adaptive-learning-rate optimization algorithms approximates
the solution of problem (5). Meanwhile, Proposition III.2 and
Subsections IV-A, IV-B, IV-C, and IV-D lead to the finding
that Algorithm 1, including Adam, AMSGrad, GWDC, and
AMSGWDC, ensures that, under η ∈ (1/2, 1],

lim inf
n→+∞

E

[
T∑
t=1

ft(xn)− f?
]

= 0 (10)

and that, under η ∈ [1/2, 1),

E

[
T∑
t=1

ft

(
1

T

T∑
t=1

xt

)
− f?

]
= O

(
1√
T

)
. (11)

The results in (10) and (11) imply that Algorithm 1 can solve
problem (5), in contrast to (6), (7), (8), and (9) that are results
for regret minimization.

Moreover, we would like to emphasize that Algorithm 1
with a constant learning rate can approximate the solution of
problem (5) in the sense of the result in Proposition III.1, i.e.,

lim inf
n→+∞

E

[
T∑
t=1

ft(xn)− f?
]
≤ T

(
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β

)
.

The above result indicates that using small constant learning
rates would be a good way to solve problem (5). Propo-
sition III.2 shows that any accumulation point of x̃n :=
(1/n)

∑n
k=1 xk belongs to argminx∈X

∑T
t=1 ft(x). Ac-

cordingly, using a diminishing learning rate is a more robust
way to solve problem (5) than using a constant learning rate
in theory, as shown in [11], [14], [15]. However, Algorithm 1
with a diminishing learning rate might not work for a rather
large number N of iterations, since step 7 in Algorithm 1
with αN ≈ 0 satisfies

xN+1 = PX,HN
(xN + αNdN ) ≈ PX,HN

(xN ) = xN .

This implies that using a diminishing learning rate would
not be good in practice. The next section shows that using
a constant learning rate tends to be superior to using a
diminishing one. This tendency was also observed in [11],
[14], [15].

V. NUMERICAL EXPERIMENTS
We examined the behavior of Algorithm 1 with different
learning rates. The adaptive-learning-rate optimization algo-
rithms with δ = 0.999 [8], [9] used in the experiments were
as follows, where the initial points initialized automatically
by PyTorch were used and ln and un were based on [16,
Section 4].

Algorithm 1 with constant learning rates:
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• ADAM-C1: Algorithm 1 with (1), γ = 0.9, αn = 10−3,
and βn = 0.9

• ADAM-C2: Algorithm 1 with (1), γ = 0.9, αn = 10−3,
and βn = 10−3

• ADAM-C3: Algorithm 1 with (1), γ = 0.9, αn = 10−2,
and βn = 10−2

• AMSG-C1: Algorithm 1 with (2), γ = 0, αn = 10−3,
and βn = 0.9

• AMSG-C2: Algorithm 1 with (2), γ = 0, αn = 10−3,
and βn = 10−3

• AMSG-C3: Algorithm 1 with (2), γ = 0, αn = 10−2,
and βn = 10−2

• GWDC-C1: Algorithm 1 with (3), γ = 0.9, ln := 0.1−
0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n, αn =
10−3, and βn = 0.9

• GWDC-C2: Algorithm 1 with (3), γ = 0.9, ln := 0.1−
0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n, αn =
10−3, and βn = 10−3

• GWDC-C3: Algorithm 1 with (3), γ = 0.9, ln := 0.1−
0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n, αn =
10−2, and βn = 10−2

• AMSGWDC-C1: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 10−3, and βn = 0.9

• AMSGWDC-C2: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 10−3, and βn = 10−3

• AMSGWDC-C3: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 10−2, and βn = 10−2

Algorithm 1 with a diminishing learning rate:

• ADAM-D1 [8]: Algorithm 1 with (1), γ = 0.9, αn =
1/
√
n, and βn = 1/2n

• ADAM-D2: Algorithm 1 with (1), γ = 0.9, αn =
1/n3/4, and βn = 1/2n

• ADAM-D3: Algorithm 1 with (1), γ = 0.9, αn = 1/n,
and βn = 1/2n

• AMSG-D1 [9]: Algorithm 1 with (2), γ = 0, αn =
1/
√
n, and βn = 1/2n

• AMSG-D2: Algorithm 1 with (2), γ = 0, αn = 1/n3/4,
and βn = 1/2n

• AMSG-D3: Algorithm 1 with (2), γ = 0, αn = 1/n,
and βn = 1/2n

• GWDC-D1 [2]: Algorithm 1 with (3), γ = 0.9, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 1/

√
n, and βn = 0.9e−n/10

4

• GWDC-D2: Algorithm 1 with (3), γ = 0.9, ln := 0.1−
0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n, αn =
1/n3/4, and βn = 1/2n

• GWDC-D3: Algorithm 1 with (3), γ = 0.9, ln := 0.1−
0.1/((1−δ)n+1), un := 0.1+0.1/(1−δ)n, αn = 1/n,
and βn = 1/2n

• AMSGWDC-D1 [2]: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 1/

√
n, and βn = 0.9e−n/10

4

• AMSGWDC-D2: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 1/n3/4, and βn = 1/2n

• AMSGWDC-D3: Algorithm 1 with (4), γ = 0, ln :=
0.1 − 0.1/((1 − δ)n + 1), un := 0.1 + 0.1/(1 − δ)n,
αn = 1/n, and βn = 1/2n

ADAM-C1, AMSG-C1, GWDC-C1, and AMSGWDC-C1
are based on the numerical results sections in [2], [8], and
[9]. We implemented ADAM-Ci, AMSG-Ci, GWDC-Ci,
and AMSGWDC-Ci (i = 2, 3) so that we could compare
ADAM-C1, AMSG-C1, GWDC-C1, and AMSGWDC-C1
with the proposed algorithms with small constant learning
rates, which are based on Theorem III.1 and Proposition III.1.

ADAM-D1, AMSG-D1, GWDC-D1, and AMSGWDC-
D1 are based on the previous results in [2], [8], and [9] (see
also (6), (7), (8), and (9)). To check how the algorithms work
with different learning rates, we implemented ADAM-Di,
AMSG-Di, GWDC-Di, and AMSGWDC-Di (i = 2, 3).

The experiments used a fast scalar computation server at
Meiji University. The environment has two Intel(R) Xeon(R)
Gold 6148 (2.4 GHz, 20 cores) CPUs, an NVIDIA Tesla
V100 (16 GB, 900 Gbps) GPU and a Red Hat Enterprise
Linux 7.6 operating system. The experimental code was
written in Python 3.8.2, and we used the NumPy 1.17.3
package and PyTorch 1.3.0 package.

A. FEEDFORWARD NEURAL NETWORK MODELS
First, we experimented with two feedforward neural network
models, a single-layer perceptron and a double-layer percep-
tron, having different hidden layers for image classification.
We used the MNIST dataset, which is a multi-class handwrit-
ten digits dataset (0–9), collected by the National Institute of
Standards and Technology (NIST). The training data were
gathered from Census Bureau employees and high-school
students. The training data contains 60,000 grayscale images
(28× 28), and the test data contains 10,000 grayscale images
(28× 28).

1) Single-layer perceptron
Figures 1 and 2 indicate that Algorithm 1 with a constant
learning rate tended to perform better than Algorithm 1 with a
diminishing one in terms of training and test accuracy score.
Moreover, Figure 2 shows that ADAM-C1 and ADAM-C2
minimized the training loss function faster than the other
algorithms. Meanwhile, Figure 4 shows that GWDC-C1,
AMSGWDC-C1, and AMSGWDC-C2 minimized the test
loss function faster than the other algorithms. Figures 4 and
8 also show that the algorithm with a constant learning rate
outperformed the one with a diminishing rate.

2) Double-layer perceptron
Figures 9,11 and Figures13,15 indicate that Algorithm 1 with
a constant learning rate tended to perform better than Algo-
rithm 1 with a diminishing one in terms of training and test
accuracy score. Figure 10 shows that AMSG-C1 and AMSG-
C2 minimized the training loss function faster than the other
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FIGURE 1. Training classification accuracy score for Algorithm 1 with a
constant learning rate versus the number of epochs on the MNIST dataset
using a single-layer perceptron
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FIGURE 2. Training loss function value for Algorithm 1 with a constant
learning rate versus the number of epochs on the MNIST dataset using a
single-layer perceptron

algorithms. On the other hand, Figure 12 shows that GWDC-
C1, GWDC-C2, and AMSGWDC-C2 performed well. We
can see that GWDC and AMGWDC with constant learning
rates were superior at training the neural network. Figures 12
and 16 also show that the algorithm with a constant learning
rate outperformed the one with a diminishing rate.

B. CONVOLUTIONAL NEURAL NETWORK MODELS
Next, we experimented with a dense convolutional network
(DenseNet) and residual network (ResNet); both are rela-
tively deep models based on convolution neural networks
(CNN) for image classification. We used the CIFAR-10
dataset, which is a benchmark for image classification. The
dataset is a collection of color image data collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It includes ten
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FIGURE 3. Test classification accuracy score for Algorithm 1 with a constant
learning rate versus the number of epochs on the MNIST dataset using a
single-layer perceptron
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FIGURE 4. Test loss function value for Algorithm 1 with a constant learning
rate versus the number of epochs on the MNIST dataset using a single-layer
perceptron

categories of images, each of which has 6,000 color images
(32 × 32). There are 50,000 training images and 10,000 test
images.

1) DenseNet
Figures 17,19 and Figures 21,23 indicate that Algorithm 1
with a constant learning rate outperformed Algorithm 1 with
a diminishing one in terms of the training and test accuracy
score. In particular, Algorithm 1 with a constant learning rate
had high accuracies. Figures 18 and 22 show that AMSG-C1
and AMSG-D2 minimized the training loss function faster
than the other algorithms, and Figures 20 and 24 show that all
algorithms except for GWDC-C2, ADAM-D1, and AMSG-
D1 minimized the test loss function.
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FIGURE 5. Training classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the MNIST dataset
using a single-layer perceptron
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FIGURE 6. Training loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the MNIST dataset using a
single-layer perceptron

2) ResNet
Figures 25,27 and Figures 29,31 indicate that Algorithm
1 with a constant learning rate outperformed Algorithm 1
with a diminishing one in terms of the training and test
accuracy score. In particular, ADAM-D1 and AMSG-D1
did not work and had low accuracies. Figure 28 shows that
AMSG-C2, AMSG-C3, and GWDC-C1 minimized the train-
ing loss function, while Figure 30 shows that ADAM-D2,
ADAM-D3, AMSG-D2, and AMSG-D3 minimized the test
loss function faster than other algorithms, such as GWDC-
Di and AMSGWDC-Di (i = 1, 2, 3). Meanwhile, Figure 32
shows that all algorithms except for ADAM-D1 and AMSG-
D1 minimized the test loss function, and Figure 28 and Figure
32 show that the algorithm with a constant learning rate
performed better than the one with a diminishing rate.
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FIGURE 7. Test classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the MNIST dataset
using a single-layer perceptron
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FIGURE 8. Test loss function value for Algorithm 1 with a diminishing learning
rate versus the number of epochs on the MNIST dataset using a single-layer
perceptron

C. UNCONSTRAINED OPTIMIZATION USING
BENCHMARK FUNCTIONS
We performed optimizations for the seven unimodal bench-
mark functions in Table 3 [12, Table 2] and compared Algo-
rithm 1 with heuristic intelligent optimization methods2, as
follows:
• GA3: Genetic algorithm, where the population size was

100, the probability of performing crossover was 0.95,
the probability of mutation was 0.025, and the maxi-
mum iteration number was 500.

• PSO [17]: Particle swarm optimization algorithm, where
the population size was 100, the acceleration constant

2https://github.com/thieu1995/mealpy
3https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_

quick_guide.htm
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FIGURE 9. Training classification accuracy score for Algorithm 1 with a
constant learning rate versus the number of epochs on the MNIST dataset
using a double-layer perceptron
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FIGURE 10. Training loss function value for Algorithm 1 with a constant
learning rate versus the number of epochs on the MNIST dataset using a
double-layer perceptron

was 1.2, and the maximum iteration number was 500.
• BBO [18]: Biogeography-based optimization algorithm,

where the population size was 100, the mutation prob-
ability was 0.01, the number of elites was 2, and the
maximum iteration number was 500.

• ASO [19]: Atom search optimization algorithm, where
the population size was 100, the depth weight was
50, the multiplier weight was 0.2, and the maximum
iteration number was 500.

• TLBO [20]: Teaching-learning-based optimization al-
gorithm, where the population size was 100 and the
maximum iteration number was 500.

The stopping condition for all the algorithms was n = 500.
Figures 33~39 plots the values of the Sphere, Schwe-

fel2.22, Schwefel1.2, Schwefel2.21, Resonbrock, Step, and
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FIGURE 11. Test classification accuracy score for Algorithm 1 with a constant
learning rate versus the number of epochs on the MNIST dataset using a
double-layer perceptron
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FIGURE 12. Test loss function value for Algorithm 1 with a constant learning
rate versus the number of epochs on the MNIST dataset using a double-layer
perceptron

Quartic benchmark functions for Algorithm 1 using con-
stant learning rates with heuristic intelligent optimization
methods (GA, PSO, BBO, ASO, and TLBO) versus elapsed
time. These figures show that all the algorithms mini-
mized the seven benchmark functions. For example, TLBO,
AMSGWDC-C3, and GWDC-C3 performed well for Sphere
and Schwefel1.2, while TLBO converged to a solution faster
than Algorithm 1 for Schwefel2.22. In contrast, in the case
of the Resonbrock benchmark function, TLBO still had not
converged to the solution when the stopping condition was
reached, but AMSGWDC-C3 and GWDC-C3 had converged
to a solution.

Figures 40~46 plots the values of Sphere, Schwefel2.22,
Schwefel1.2, Schwefel2.21, Resonbrock, Step, and Quartic
benchmark functions for Algorithm 1 using diminishing
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TABLE 3. Unimodal benchmark functions [12, Table 2]

Name Benchmark Function Dimension Range fmin

Sphere f1(x) =
n∑

i=1
x2i 50 xi ∈ [−100, 100] 0

Schwefel2.22 f2(x) =
n∑

i=1
|xi|+

n∏
i=1
|xi| 50 xi ∈ [−10, 10] 0

Schwefel1.2 f3(x) =
n∑

i=1
(

i∑
j=1

xj)2 50 xi ∈ [−100, 100] 0

Schwefel2.21 f4(x) = max
1≤i≤D

{|xi|} 50 xi ∈ [−100, 100] 0

Resonbrock f5(x) =
D−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2] 50 xi ∈ [−30, 30] 0

Step f6(x) =
n∑

i=1
(|xi + 0.5|)2 50 xi ∈ [−100, 100] 0

Quartic f7(x) =
n∑

i=1
x4i + random(0, 1) 50 xi ∈ [−1.28, 1.28] 0
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FIGURE 13. Training classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the MNIST dataset
using a double-layer perceptron

learning rates with GA, PSO, BBO, ASO, and TLBO versus
elapsed time. These figures also show that all the algorithms
minimized the seven benchmark functions. For example, for
Schwefel2.22, TLBO converged to the solution faster than
Algorithm 1. For Step, Algorithm 1 performed better than
TLBO.

VI. CONCLUSION
This paper presented a unification of the existing adaptive-
learning-rate optimization algorithms for nonconvex stochas-
tic optimization in deep neural networks. It also presented
two convergence analyses of the algorithm. The first analysis
showed that the algorithm approximates a stationary point
of the problem when it uses a constant learning rate. The
second analysis showed that the algorithm converges to a
stationary point of the problem when it uses a diminishing
learning rate. The advantage of the proposed convergence
analyses over the existing ones is that they show that the

1 20 39 58 77 96
epoch

10 3

10 1

101

103

105

tra
in

in
g 

lo
ss

ADAM-D1
ADAM-D2
ADAM-D3
AMSG-D1
AMSG-D2
AMSG-D3
AMSGWDC-D1
AMSGWDC-D2
AMSGWDC-D3
GWDC-D1
GWDC-D2
GWDC-D3

FIGURE 14. Training loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the MNIST dataset using a
double-layer perceptron

existing adaptive-learning-rate optimization algorithms can
be applied to stochastic optimization in deep neural networks.
The experiments provided support for the convergence anal-
yses. In particular, the numerical results for training neural
networks showed that the algorithm with a constant learning
rate performed better than the one with a diminishing rate, as
promised by the convergence analyses. Moreover, the numer-
ical results for minimizing benchmark functions showed that
the proposed algorithm and TLBO performed well.
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FIGURE 21. Training classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the CIFAR-10
dataset using DenseNet
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FIGURE 22. Training loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the CIFAR-10 dataset using
DenseNet
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FIGURE 23. Test classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the CIFAR-10
dataset using DenseNet
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FIGURE 24. Test loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the CIFAR-10 dataset using
DenseNet
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FIGURE 25. Training classification accuracy score for Algorithm 1 with a
constant learning rate versus the number of epochs on the CIFAR-10 dataset
using ResNet
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FIGURE 26. Training loss function value for Algorithm 1 with a constant
learning rate versus the number of epochs on the CIFAR-10 dataset using
ResNet
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FIGURE 27. Test classification accuracy score for Algorithm 1 with a constant
learning rate versus the number of epochs on the CIFAR-10 dataset using
ResNet
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FIGURE 28. Test loss function value for Algorithm 1 with a constant learning
rate versus the number of epochs on the CIFAR-10 dataset using ResNet
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FIGURE 29. Training classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the CIFAR-10
dataset using ResNet
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FIGURE 30. Training loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the CIFAR-10 dataset using
ResNet
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FIGURE 31. Test classification accuracy score for Algorithm 1 with a
diminishing learning rate versus the number of epochs on the CIFAR-10
dataset using ResNet
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FIGURE 32. Test loss function value for Algorithm 1 with a diminishing
learning rate versus the number of epochs on the CIFAR-10 dataset using
ResNet
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FIGURE 33. Sphere values for Algorithm 1 using constant learning rates with
heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and TLBO)
versus elapsed time
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FIGURE 34. Schwefel2.22 values for Algorithm 1 using constant learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 35. Schwefel1.2 values for Algorithm 1 using constant learning rates
with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 36. Schwefel2.21 values for Algorithm 1 using constant learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time

0 10 20 30 40 50
time(s)

101

102

103

104

105

106

lo
ss

Resonbrock
ADAM-C1
ADAM-C2
ADAM-C3
GWDC-C1
GWDC-C2
GWDC-C3
AMSG-C1
AMSG-C2
AMSG-C3
AMSGWDC-C1
AMSGWDC-C2
AMSGWDC-C3
GA
PSO
BBO
ASO
TLBO

FIGURE 37. Resonbrock values for Algorithm 1 using constant learning rates
with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 38. Step Function values for Algorithm 1 using constant learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 39. Quartic function values for Algorithm 1 using constant learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 40. Sphere values for Algorithm 1 using diminishing learning rates
with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 41. Schwefel2.22 values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 42. Schwefel1.2 values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 43. Schwefel2.21 values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 44. Resonbrock values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 45. Step Function values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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FIGURE 46. Quartic function values for Algorithm 1 using diminishing learning
rates with heuristic intelligent optimization methods (GA, PSO, BBO, ASO, and
TLBO) versus elapsed time
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