
1

Distributed Optimization for Network Resource
Allocation with Nonsmooth Utility Functions

Hideaki Iiduka

Abstract—The network utility maximization (NUM) problem
is the problem of maximizing the overall utility of a network
under capacity constraints, where each source in the network
has its own private nonsmooth concave utility function (which
allows the true utility to be modeled accurately) and each link
in the network has only its capacity constraint. To solve this
problem, two distributed optimization algorithms are proposed:
a projected proximal algorithm and a projected subgradient
algorithm. These algorithms can be implemented for the case
that each source tries to maximize only its utility by using
its proximity operator or subdifferential and each link tries to
satisfy only its capacity constraint by using the metric projection
onto its capacity constraint set. A convergence analysis indicates
that these algorithms are sufficient for each source to find
the optimal resource allocation. The convergence, optimality,
and performance of the proposed algorithms are demonstrated
through numerical comparisons with the existing decentralized
network flow control algorithm.

Index Terms—Distributed optimization, metric projection, net-
work utility maximization, nonsmooth utility function, proximity
operator, subdifferential.

I. INTRODUCTION

IN modern communication networks, a critical problem is
how best to allocate the network resources. One method of

addressing this problem is to treat it as a utility-based resource
allocation problem, for which the goal is to determine the
source rates that maximize the overall utility, that is, the utility
aggregated over all sources, where the constraints are all of
the link capacity constraints. This problem is referred to as
the network utility maximization (NUM) problem [13], [26,
Chapter 2].

In the case that all sources have the same logarithmic utility
function, the resource allocation from the NUM is said to
be proportionally fair [13], [20], [26, Chapter 2] (refer to,
e.g., [20] for a comparison of standard definitions of fairness).
Various optimization algorithms for solving the NUM problem
have been reported that can be applied to the standard smooth
concave functions. For example, asynchronous distributed al-
gorithms [17] use projected gradient algorithms to perform
NUM. Wei et al. [27], [28] proposed a distributed Newton-
type fast converging algorithm for the NUM problem that has a
superlinear rate of convergence. Beck et al. [2] proposed a fast
distributed gradient method as an alternative to decentralized
algorithms using dual-based gradient methods. Marašević et
al. [18] proposed a fast distributed stateless algorithm for
general smooth utility maximization problems. For cases that

H. Iiduka is with the Department of Computer Science, Meiji University,
Kanagawa 214-8571, Japan (e-mail: iiduka@cs.meiji.ac.jp). This work was
supported by JSPS KAKENHI Grant Numbers JP15K04763 and JP18K11184.

the utility functions are differentiable but nonconcave, various
iterative algorithms [10], [12] have been proposed.

When each source has a transmission rate demand for some
application’s service, the utility of the source increases with
increasing transmission rate for transmission rates less than
the demand and is constant for transmission rates above the
demand. Thus, the utility function of the source is a nonsmooth
concave function1. Therefore, in the present work on the NUM
problem, we assume that the utility function of each source is
concave but not necessarily differentiable at all points.

In the case of nonsmooth concave utility functions, typical
techniques using the (Lipschitz continuous) gradients and
Hessian of the utility functions are not available for the NUM
problem. Therefore, for the present work, we use proximity
operators [1, Definition 12.23], [19], [21], [25] of nonsmooth
concave utility functions, which are utilized in practical prob-
lems in signal processing [7], [8]. We also use subdifferentials
[1, Definition 16.1] of nonsmooth concave utility functions,
which are useful for solving distributed convex optimization
problems [3], [22]. Using a proximity operator or a subdiffer-
ential, each source can separately maximize its own utility2.

There have been useful algorithms that can be applied to the
NUM problem with nonsmooth concave utility functions. For
example, a distributed algorithm [25] uses proximity operators
of utility functions and the metric projection using all of the
link capacity constraints. Bertsekas [3] proposed incremental
optimization algorithms using the metric projection onto the
intersection of all of the link capacity constraint sets. Nedić
and Ozdaglar [23], [24] proposed dual subgradient and primal-
dual subgradient methods to solve the NUM problem in a
distributed manner. Recently, Yu and Neely [30] proposed a
fast dual subgradient method that can be applied to the case
where utility functions are concave.

The main objective of this paper is to propose distributed
optimization algorithms that enable each source to find the
optimal solution to the NUM problem for the case that each
source tries to maximize its utility and each link tries to satisfy
only its own capacity constraint. To address this goal, we
consider a network system [17], [30] such that each source
can communicate with links that it uses and each link can
communicate with sources that uses it. We refer to sources

1As a simple example showing that a utility function need not be dif-
ferentiable, suppose that the transmission rate of source s is xs and that
the transmission rate demand is r0. Then the utility function defined as
us(xs) = xs for xs ≤ r0 and us(xs) = r0 for xs > r0 is nondifferentiable.

2The computational efficient of the proximity operators of several com-
monly used functions, such as the l1-norm, quadratic polynomial, logarithm,
and sums of these functions, are shown in Tables 10.1 and 10.2 in [8].
Examples of functions of which subdifferentials can be efficiently computed
are shown in [1, Chapters 16–18].



2

and links in the communication network as users and assume
that each user and its neighboring users that can communicate
with it form a subnetwork in which each user can transmit its
estimate to its neighboring users.

For this research, we propose two distributed optimization
algorithms and apply these algorithms to the solution of the
NUM problem. The first proposed algorithm is a projected
proximal algorithm based on the random projected proximal
algorithm [11, Algorithm 3.1]. The second proposed algorithm
is a projected subgradient algorithm based on the random
projected subgradient algorithm [11, Algorithm 4.1]. The
proposed algorithms can work for the case where, at each time,
each user receives its neighboring users’ estimates, computes
their average, and updates its estimate by using the computable
metric projection and proximal point (or subgradient) of its
own private utility function at the average.

The proposed algorithms are related to the existing algo-
rithms for solving the NUM problem with nonsmooth concave
utility functions described in the fifth paragraph of this section.
The algorithms in [3], [25] need to use the metric projection
onto the intersection of all the link capacity constraint sets
(see algorithms (8) and (9) for the details of the algorithms
in [3], [25]). Since this intersection is complicated, it would
be difficult to compute the metric projection. The proposed
algorithms can be implemented using only the computable
metric projections onto half-spaces and can solve the NUM
problem over the complicated intersection of all the capacity
constraint sets. The dual subgradient and primal-dual sub-
gradient methods [23], [24] can be implemented under the
assumption that there exist “network providers” [23, p.1761]
knowing all of the link capacities (see algorithm (11) for
the details of the method in [23]). However, it might not be
realistic to assume the existences of network providers. The
proposed algorithms can be implemented under the assumption
that there is no user that knows all of the link capacities
and that each link knows only its own private link capacity.
The decentralized network flow control (DNFC) algorithm [30,
Algorithm 2] can work for the case where each user transmits
its estimate to its neighboring users and can solve the NUM
problem considered in the present paper [30, Theorem 3, (23)]
(see algorithm (13) for the details of the DNFC algorithm).

This paper makes the following three contributions. First,
this paper formulates the NUM problem as a nonsmooth
concave optimization problem over the intersection of closed
convex sets (Problem II.1). Allowing the utility function of
each source to be nonsmooth enables it to accurately model the
true utility. Secondly, our convergence analysis indicates that
the whole sequence generated by either of our two proposed
algorithms with diminishing step sizes converges to the NUM
problem solution (Theorems III.1 and III.2). In particular,
the present paper presents a convergence rate analysis of
the proposed algorithms (Theorem III.1(ii)) that could not be
performed using the analysis method in [11, Subsections 3.2
and 4.2] of random projection algorithms. We also perform a
detailed convergence analysis of the proposed algorithms with
constant step sizes (Theorem III.1(i)), unlike [11]. Finally, the
behaviors of the two proposed algorithms are compared to that
of the DNFC algorithm [30, Algorithm 2] and it is shown that

the proposed algorithms with diminishing step sizes performed
better than the DNFC algorithm.

The remainder of this paper is organized as follows. Sec-
tion II gives the constraint sets and utility functions of the
users and states the NUM problem in terms of a nonsmooth
concave optimization over the intersection of closed convex
sets. Section III gives the details of the proposed projected
proximal and subgradient algorithms and shows the results
of a convergence analysis. It also provides comparisons of the
proposed algorithms with the existing algorithms for the NUM
problem. In Section IV, a concrete NUM problem is examined
and the behaviors of the two proposed algorithms and the
DNFC algorithm are compared numerically. First, however,
we present the notation and some definitions used herein.

A. Notation and Definitions
RS denotes an S-dimensional Euclidean space with inner

product 〈·, ·〉 which induces norm ‖ · ‖, and RS+ := {x :=
(xs)

S
s=1 ∈ RS : xs ≥ 0 (s = 1, 2, . . . , S)}. N denotes the set

of natural numbers (namely, the positive integers and zero).
[W ]ij and W> denote the (i, j)th entry and the transpose
of a matrix W . Id denotes the identity mapping on RS . The
fixed point set of a mapping T : RS → RS is denoted by
Fix(T ) := {x ∈ RS : T (x) = x}.

A mapping T : RS → RS is nonexpansive [1, Definition
4.1(ii)] if ‖T (x)− T (y)‖ ≤ ‖x− y‖ (x,y ∈ RS), and T is
firmly nonexpansive if ‖T (x)−T (y)‖2+‖(Id−T )(x)−(Id−
T )(y)‖2 ≤ ‖x−y‖2 (x,y ∈ RS). The metric projection onto
a nonempty closed convex set C ⊂ RS is denoted by PC , and
PC(x) (x ∈ RS) is such that

PC(x) ∈ C and ‖x− PC(x)‖ = d(x, C) := inf
y∈C
‖x− y‖.

The mapping PC is firmly nonexpansive and satisfies
Fix(PC) = C [1, Proposition 4.8, (4.8)].

Given a convex function f : RS → R, the proximity
operator of f [1, Definition 12.23], [19], [21], denoted by
Proxf , maps every x ∈ RS to the unique minimizer of
f(·) + (1/2)‖x− ·‖2. That is, for all x ∈ RS ,

{Proxf (x)} = argmin
y∈RS

[
f(y) +

1

2
‖x− y‖2

]
.

The subdifferential [1, Definition 16.1] of f : RS → R is
the set-valued operator defined for all x ∈ RS by

∂f(x) :=
{
u ∈ RS : f(y) ≥ f(x) + 〈y − x,u〉

(
y ∈ RS

)}
.

A point u ∈ ∂f(x) is said to be a subgradient of f at x.
A directed graph G := (V, E) is a finite nonempty set
V of nodes (users) and a collection E of ordered pairs of
distinct nodes from V [4, p. 394]. A directed graph is said
to be strongly connected if, for each pair of nodes i and
l, there exists a directed path from i to l [4, p. 394]. The
network topology at time k is expressed as a directed graph
G(k) := (V, E(k)), where E(k) ⊂ V × V and (i, j) ∈ E(k)
stands for a link such that user i receives information from
user j at time k. Let Ni(k) ⊂ V be the set of users that send
information to user i; i.e., Ni(k) := {j ∈ V : (i, j) ∈ E(k)}
and i ∈ Ni(k) (i ∈ V, k ≥ 0). We call user j (j ∈ Ni(k))
neighboring user j of user i at time k.



3

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an abstract network comprising a set of sources
S := {1, 2, . . . , S} and a set of links L := {1, 2, . . . , L},
where link l has capacity cl ∈ R+. Let S(l) ⊂ S denote the
set of sources that use link l and let L(s) ⊂ L denote the set
of links used by source s. The transmission rate of source s
is denoted by xs ∈ R+. We refer to i ∈ V := S ∪L as user i.

A. Capacity Constraints

The capacity constraint for link l is the restriction that the
sum of the transmission rates of all the sources sharing the link
be less than or equal to cl. Accordingly, the capacity constraint
set Cl ⊂ RS of link l is defined by

Cl :=

x := (xs)s∈S ∈ RS :
∑
s∈S(l)

xs ≤ cl

 . (1)

We assume that link l has a constraint set Cl having a closed-
form expression. This implies that link l knows the elements
in S(l) and the value of cl. Other users cannot know the
information of link l. In this paper, we call the information that
only user i knows user i’s private information. Since Cl is a
half-space, the metric projection PCl

onto Cl can be computed
within a finite number of arithmetic operations [1, Example
28.16]3. Hence, Pl := PCl

is link l’s private information.
We also assume that source s maximizes its utility over

the interval Is := [0,Ms], where Ms > 0 denotes the
maximum allowed rate for source s (see Subsection II-B for
the definitions of utility functions). In this case, the constraint
set of source s is defined by

Cs :=
{
x := (xs)s∈S ∈ RS : xs ∈ Is := [0,Ms]

}
. (2)

Since no one knows the value of Ms except source s, the
computable projection Ps := PCs

is source s’s private infor-
mation.

Consistent with the above discussion, the following is
assumed.

Assumption II.1
(i) Link l (l ∈ L) has the metric projection Pl onto Cl with

Fix(Pl) = Cl, which is its own private information,
where Cl is defined by (1).

(ii) Source s (s ∈ S) has the metric projection Ps onto
Cs with Fix(Ps) = Cs, which is its own private
information, where Cs is defined by (2).

The constraint set in the NUM problem is composed of
the intervals for maximum allowed rates for sources and the
capacity constraints for links. Accordingly, the constraint set
is defined as the following subset of RS :

C := (I1 × · · · × IS) ∩
⋂
l∈L

Cl =
⋂
s∈S

Cs ∩
⋂
l∈L

Cl

=
⋂
s∈S

Fix(Ps) ∩
⋂
l∈L

Fix(Pl).
(3)

3The metric projection PH onto a half-space H := {x ∈ RS : 〈a,x〉 ≤
r} is given by PH(x) = x for x ∈ H and PH(x) = x + ((r −
〈a,x〉)/‖a‖2)a for x /∈ H , where r ∈ R, a 6= 0, and functions 〈·, ·〉
and ‖ · ‖ are respectively the inner product and norm of RS .

B. Utility Function
We assume that each source s in the network acts so as

to maximize its own utility. The utility of source s is defined
by the value of a utility function us at current rate xs. The
resource allocation corresponding to the utility function of
source s defined for all x := (xs)s∈S ∈ RS+ by

us(x) := ws log(xs + ps), (4)

where ws, ps > 0 are source s’s private information, is said
to be weighted proportionally fair [13], [20], [26, Chapter
2.1]. The function defined by (4) is differentiable and strictly
concave [1, Proposition 17.13(i), (iv)], which implies that
the utility of each source increases for any increase in its
transmission rate. Moreover, the function us defined by (4)
is Lipschitz continuous on Cs (see (2) for the definition of the
constraint set of source s).

We also assume the existence of a source having utility
which increases with increasing transmission rate when its
transmission rate is less than a certain value (e.g., the rate
needed for an application’s service) but does not always
increase when its transmission rate is more than this value.
Such a utility function is, for example, expressed as the
following nonsmooth, Lipschitz continuous function: for all
x := (xs)s∈S ∈ RS+,

us(x) := −max{−ws(xs − as) + bs, bs}, (5)

where ws > 0 and as, bs ∈ R are source s’s private
information (see also Section IV). The function us defined
by (5) is concave [7, Lemma 10]. Meanwhile, we assume that
each link l in the network does not have utility of its own since
the NUM problem is to maximize the sum of utility functions
of all sources.

As seen in (4) and (5), the closed-form expression of us is
source s’s private information. From the above discussion, the
following is assumed.

Assumption II.2
(i) The utility function us : RS → R of source s (s ∈ S)

is concave and Lipschitz continuous, which is its own
private information. In addition, each source s has
an associated proximity operator and an associated
subdifferential.

(ii) The utility function ul : RS → R of link l (l ∈ L) is
defined for all x ∈ RS by ul(x) = 0.

This proximity operator of −us defined by either (4) or
(5) can be easily computed within a finite number of arith-
metic operations [7, Lemma 10], [8, Tables 10.1 and 10.2].
The subgradients of −us defined by either (4) or (5) can
be computed efficiently [1, Chapter 16]. Assumption II.2(ii)
implies that, for all l ∈ L, all x ∈ RS , and all α > 0,
Prox−αul

(x) = x and ∂(−ul)(x) = {0}.

C. NUM problem
The main objective of this paper is to solve the NUM

problem,

maximize
∑
s∈S

us(x) subject to x ∈ C :=
⋂
s∈S

Cs ∩
⋂
l∈L

Cl,



4

where us : RS+ → R satisfies Assumption II.2(i), and Cl and
Cs are the subsets of RS defined by (1) and (2), respectively.
Assumption II.2(ii) and (3), together with V := S ∪ L,
thus imply that the NUM problem considered here can be
formulated as follows.

Problem II.1 Under Assumptions II.1 and II.2,

maximize U(x) :=
∑
i∈V

ui(x)

subject to x ∈ C :=
⋂
i∈V

Fix(Pi).

The solution set of Problem II.1 is nonempty since
⋂
s∈S Cs

is bounded and C ⊂
⋂
s∈S Cs =

⋂
s∈S Fix(Ps) [1, Corollary

8.31, Proposition 11.14].

III. DISTRIBUTED OPTIMIZATION ALGORITHMS

Assumptions II.1 and II.2 ensure that source s uses only
the closed-form expressions of us and Cs and link l uses
only the closed-form expressions of ul and Cl. This section
proposes two distributed optimization algorithms that enable
each user to solve Problem II.1 without using other users’
private information.

A. Assumptions
To address the goal of this paper, the following is assumed.

Assumption III.1 [17, p.864]
(i) Source s (s ∈ S) can communicate with link l (l ∈
L(s)), and link l (l ∈ L) can communicate with source
s (s ∈ S(l)).

(ii) At time k, each user i (i ∈ V) and its neighboring users
j (j ∈ Ni(k)) form a network in which each user can
transmit its estimate to its neighboring users.

To solve Problem II.1 in a distributed manner, the following
assumptions are also needed.

Assumption III.2 [16, Assumption 4] There exists Q ≥ 1
such that the graph (V,

⋃Q−1
l=0 E(k+ l)) is strongly connected

for all k ∈ N.

Assumption III.3 [16, Assumption 5] For k ∈ N, user i has
a set of weight parameters wij(k) (j ∈ V) satisfying the
following:

(i) wij(k) ≥ 0 for all j ∈ V and wij(k) = 0 when j /∈
Ni(k);

(ii) There exists w ∈ (0, 1) such that wij(k) ≥ w for all
j ∈ Ni(k).

(iii)
∑
j∈V wij(k) = 1 for all i ∈ V and

∑
i∈V wij(k) = 1

for all j ∈ V .

A relationship exists between Assumptions III.2 and III.3.
The matrix W (k) defined by [W (k)]ij := wij(k) (k ∈
N) satisfying Assumption III.3(i)–(iii) is said to be doubly
stochastic [16, Assumption 5]. Theorem 1 in [29] indicates
that the spectral radius ρ of the doubly stochastic matrix W (k)
(k ∈ N) is less than one if and only if, for all k ∈ N,

lim
t→+∞

W (k)t =
ee>

S + L
, (6)

where e ∈ RS+L denotes a column vector in which all the
entries are equal to one. Moreover, Theorem 3.2.1 in [6]
and the remark in [29, Theorem 1] show that (6) means
the network is strongly connected. Accordingly, Assumption
III.2 holds if ρ < 1. For example, ρ < 1 holds when one
is a simple eigenvalue of W (k) and all other eigenvalues
are strictly less than one in magnitude [29, p.67]. We need
methods for setting wij(k) (i ∈ V, j ∈ Ni(k)) that sat-
isfy Assumption III.3. For example, there is a decentralized
method that can be implemented under the condition that users
pass along messages in cyclic order. Our GitHub repository
(URL: https://github.com/iiduka-researches/misc/blob/master/
misc/matrix.py) provides the implementation in Python.

B. Projected Proximal Algorithm

Algorithm 1 is a projected proximal algorithm for solving
Problem II.1 under the assumptions in Sections II and III-A.

Algorithm 1 Projected proximal algorithm

Require: (αk)k∈N ⊂ (0,+∞)
1: k ← 0, xi(0) ∈ RS (i ∈ V := S ∪ L)
2: loop
3: for i = 1 to i = V := S + L do
4: vi(k) :=

∑
j∈Ni(k)

wij(k)xj(k)

xi(k + 1) := Pi (Prox−αkui
(vi(k)))

=

{
Ps (Prox−αkus

(vs(k))) (i = s ∈ S)

Pl (vl(k)) (i = l ∈ L)

5: end for
6: k ← k + 1
7: end loop

Assumption III.1 ensures that user i receives xj(k) from
its neighboring users j ∈ Ni(k). Moreover, Assumption III.3
means that user i has a set of weight parameters wij(k)
(j ∈ V), which implies that user i can compute the weighted
average vi(k) in step 4 of Algorithm 1. When user i is
source s, source s tries to maximize its utility function us
over its constraint set Cs defined by (2). The simplest way to
achieve this objective is for source s to implement a projected
proximal algorithm [3], [25] using both the metric projection
Ps onto Cs and the proximity operator Prox−αus (α > 0).
Assumptions II.1(ii) and II.2(i) guarantee that source s can
use the computable metric projection Ps and the computable
proximity operator Prox−αus

(α > 0). Since source s has
vs(k), source s can implement the projected proximal algo-
rithm defined by xs(k + 1) = Ps(Prox−αkus(vs(k))). When
user i is link l, link l tries to satisfy only the condition in
its constraint set Cl defined by (1) since link l does not
have utility of its own, i.e., ul(x) = 0. Accordingly, it
is sufficient for link l to implement a projection algorithm
using the metric projection Pl onto Cl. Assumption II.1(i)
ensures that link l can use the computable metric projection
Pl, and hence, link l can implement the projection algorithm
defined by xl(k + 1) = Pl(vl(k)). Since Assumption II.2(ii)



5

implies that Prox−αkul
(vl(k)) = vl(k), we can see that

xl(k + 1) = Pl(vl(k)) = Pl(Prox−αkul
(vl(k))).

The following is a convergence analysis of Algorithm 1.
The proof of Theorem III.1 is given in Appendix A.

Theorem III.1 Suppose that Assumptions II.1, II.2, III.1,
III.2, and III.3 hold. Then the sequences (vi(k))k∈N and
(xi(k))k∈N (i ∈ V) generated by Algorithm 1 satisfy the
following properties:

(i) If αk := α is chosen for all k ∈ N, then there exist
positive real numbers Mi (i = 1, 2) such that

lim inf
k→+∞

∑
i∈V

d(xi(k), C)2 ≤M1α
2 and

lim sup
k→+∞

∑
i∈V

ui (PC(vi(k))) ≥ U? −M2α,

where d(x, C) := infy∈C ‖x− y‖ (x ∈ RS) and U? is
the optimal value of Problem II.1.

(ii) If (αk)k∈N is such that
∑+∞
k=0 αk = +∞ and∑+∞

k=0 α
2
k < +∞, then (xi(k))k∈N (i ∈ V) converges

to a solution x? of Problem II.1, as well as satisfying
that ∑

i∈V
d

(
1

k

k∑
t=1

xi(t), C

)2

= O
(

1

k

)
. (7)

Assume that (A) there exists a positive real number c
such that c

∑
i∈V ‖vi(k) − x?‖2 ≤

∑
i∈V d(vi(k), C)2

for all k ∈ N. Then the following hold:
(a) If αk = c1/k for some positive real number c1, then∑
i∈V

ui

(
1

k

k∑
t=1

PC(vi(t))

)
≥ U? −O

(
1 + log k

k

)
;

(b) If αk = c2/(k + 1) for some positive real number
c2, then∑
i∈V

ui

(
2

k(k + 1)

k∑
t=1

tPC(vi(t))

)
≥ U? −O

(
1

k

)
.

Theorem III.1(i) implies that lim infk→+∞ d(xi(k), C)2 ≤
M1α

2 (i ∈ V). Accordingly, we can expect that the sequence
(xi(k))k∈N (i ∈ V) generated by Algorithm 1 with a small
step size α approximates a point in the constraint set of the
NUM problem. Moreover, Theorem III.1(i) implies that, when
α is small, vi(k) (i ∈ V) may approximate a solution to the
NUM problem.

Meanwhile, Theorem III.1(ii) guarantees that, if we can
choose a diminishing step size (αk)k∈N (e.g., αk := 1/k
(k ∈ N\{0})), then the sequence (xi(k))k∈N of each user
i converges to a solution of Problem II.1, i.e., each source s
and each link l can find the optimal resource allocation in a
distributed manner. From (7), we have that

d

(
1

k

k∑
t=1

xi(t), C

)2

= O
(

1

k

)
(i ∈ V),

which implies that the squared distance between the average
of (xi(t))

k
t=1 and C converges at an O(1/k) rate. In gen-

eral, we have that d(vi(k), C) := infx∈C ‖vi(k) − x‖ ≤

‖vi(k) − x?‖ (i ∈ V, k ∈ N), i.e.,
∑
i∈V d(vi(k), C)2 =

O(
∑
i∈V ‖vi(k) − x?‖2). Meanwhile, condition (A) im-

plies that c
∑
i∈V ‖vi(k) − x?‖2 ≤

∑
i∈V d(vi(k), C)2 ≤∑

i∈V ‖vi(k) − x?‖2 (k ∈ N), i.e.,
∑
i∈V d(vi(k), C)2 =

Θ(
∑
i∈V ‖vi(k)−x?‖2) [15, p.19]. Theorem III.1(ii) (a) and

(b) indicate that, under the assumption that
∑
i∈V d(vi(k), C)2

is bounded not only above but also below by
∑
i∈V ‖vi(k)−

x?‖2 asymptotically4, the optimality error between the sum
of the values of ui (i ∈ V) at the average of (PC(vi(t)))

k
t=1

and U? converges at a rate of O((1 + log k)/k) or O(1/k).
The DNFC algorithm [30, Algorithm 2] achieves an O(1/k)
convergence rate (see (14)).

C. Projected Subgradient Algorithm

The following is a distributed subgradient algorithm for
solving Problem II.1 (see [16, (2a), (2b)] for a distributed
random projection algorithm for smooth convex optimization).
Algorithm 2 is obtained by replacing Prox−αkui

(vi(k)) in
Algorithm 1 with vi(k)−αkgi(k), where gi(k) stands for the
subgradient of −ui at vi(k) and gl(k) = 0 (l ∈ L, k ∈ N)
(by Assumption II.2(ii)).

Algorithm 2 Projected subgradient algorithm

Require: (αk)k∈N ⊂ (0,+∞)
1: k ← 0, xi(0) ∈ RS (i ∈ V := S ∪ L)
2: loop
3: for i = 1 to i = V := S + L do
4: vi(k) :=

∑
j∈Ni(k)

wij(k)xj(k)

gi(k) ∈ ∂(−ui)(vi(k))

xi(k + 1) := Pi (vi(k)− αkgi(k))

=

{
Ps (vs(k)− αkgs(k)) (i = s ∈ S)

Pl (vl(k)) (i = l ∈ L)

5: end for
6: k ← k + 1
7: end loop

The following convergence analysis of Algorithm 2 is the
same as that in Theorem III.1. We can prove Theorem III.2
by referring to the proof of Theorem III.1 and the results in
[11, Section 4] (see Appendix A).

Theorem III.2 Suppose that the assumptions in Theorem III.1
hold. Then, the sequences (vi(k))k∈N and (xi(k))k∈N (i ∈ V)
generated by Algorithm 2 satisfy the properties in Theorem
III.1(i) and (ii).

D. Existing Algorithms for Nonsmooth Convex Optimization

This subsection surveys optimization algorithms for solving
Problem II.1 and related work. Parikh and Boyd proposed the
following algorithm [25, Subsection 5.4, (5.14)] that can be

4We verified that (
∑

i∈V ‖vi(k) − x?‖2)k∈N generated by Algorithms
1 and 2 used in Section IV has almost the same convergence rate as
(
∑

i∈V d(vi(k), C)2)k∈N and Algorithms 1 and 2 satisfy (A) for all
k ≤ 103 with c = 10−3.



6

applied to Problem II.1: Suppose that user i has xi(k), vi(k),
x(k + 1), z(k), and v(k) at time k. User i computes

xi(k + 1) := Prox−λui (xi(k)− z(k)− v(k)) ,

z(k + 1) := PC (x(k + 1) + v(k)) ,

vi(k + 1) := vi(k) + xi(k + 1)− z(k + 1),

(8)

where λ > 0. Bertsekas proposed three incremental proximal
algorithms [3, (19), (20), (21)] for minimizing

∑
i∈V(fi(x) +

hi(x)) subject to x ∈ C, where fi : RS → R and hi : RS → R
(i ∈ V) are convex, and the proximal operator of fi and the
subdifferential of hi can be computed efficiently. For example,
algorithm (20) in [3] is as follows:

z(k) := Proxλkfi (x(k)) ,

x(k + 1) := PC

(
z(k)− λk∇̃hi(z(k))

)
,

(9)

where (λk)k∈N ⊂ (0, 1) satisfies that limk→+∞ λk = 0
and

∑+∞
k=0 λk = +∞, {fi, hi} are chosen for iteration in

a cyclic order or a randomized order [3, p.170, (1), (2)],
and ∇̃hi(x) ∈ ∂hi(x) (i ∈ V,x ∈ RS). Under certain
assumptions, the sequence (x(k))k∈N generated by algorithm
(9) converges to some minimizer of

∑
i∈V(fi + hi) over C

[3, Propositions 6 and 9]. When algorithms (8) and (9) are
applied to Problem II.1, it is necessary to compute the metric
projection PC onto C defined by (3). Since the form of (3)
is not always simple, it would be difficult to apply algorithms
using PC at each iteration to Problem II.1.

Nedić and Ozdaglar [23], [24] studied the dual problem of
Problem II.1 as follows:

maximize q(µ) :=
∑
s∈S

max
xs∈Is

{us(xs)− xsµs}+
∑
l∈L

µlcl

subject to µ := (µi)i∈V ∈ RV+. (10)

They proposed the following dual subgradient and primal-dual
subgradient methods [23, Subsection 2.2, (15), (16)] to solve
the NUM problem (see also [24, (16), (17)]): given µ(k) :=
(µi(k))i∈V ∈ RV+ ,

xs(k) ∈ argmax
xs∈Is

{us(xs)− xsµs(k)}+
∑
l∈L

µl(k)cl,

µ(k + 1) := [µ(k) + γkg(x(k))]
+
,

x̃(k) :=

∑
s∈S αsx(k)∑
s∈S αs

,

(11)

where gl(x) :=
∑
s∈S(l) xs− cl (l ∈ L,x := (xs)s∈S ∈ RS),

gs(x) := 0 (s ∈ S,x ∈ RS), g(x) := (gi(x))>i∈V (x ∈ RS),
(γk)k∈N, (αs)s∈S ⊂ (0,+∞), and µ+ := (max{0, µi})>i∈V
(µ := (µi)i∈V ∈ RV ). Proposition 2 in [23] provides the
lower and upper bounds on the primal cost

∑
s∈S us of x̃(k)

defined by (11) under certain assumptions. The update of µ(k)
defined by algorithm (11) uses all the values of the cls since
algorithm (11) uses gl(x) :=

∑
s∈S(l) xs − cl (l ∈ L,x :=

(xs)s∈S ∈ RS). Hence, algorithm (11) can be implemented by
“network providers” [23, p.1761] knowing all of the values of
the cls. However, the existence of such “network providers”
might not be realistic in modern communication networks.
Meanwhile, each link l in Algorithms 1 and 2 uses only the
information of its own link (i.e., the closed-form expression

of Cl) and each source s uses only its own utility function
and constraint set (i.e., the closed-form expressions of us and
Cs). As a result, they can find the optimal resource allocation
using Algorithms 1 and 2 (Theorems III.1 and III.2).

Yu and Neely proposed a decentralized dual subgradient al-
gorithm [30, Algorithm 2] that can be applied to the multipath
NUM problem including Problem II.1. The following is the
DNFC algorithm [30, Algorithm 2] for Problem II.1. Given a
point Ql(k), each link l receives xs(k) (s ∈ S(l)) and updates
Ql(k + 1) and Yl(k + 1) defined as follows:

Ql(k + 1)

:= max

− ∑
s∈S(l)

xs(k) + cl, Ql(k) +
∑
s∈S(l)

xs(k)− cl

 ,

Yl(k + 1) := Ql(k + 1) +
∑
s∈S(l)

xs(k)− cl.

Link l transmits Yl(k+ 1) to source s (s ∈ S(l)). Meanwhile,
given points xs(k − 1), ys(k − 1), Rs(k), and Zs(k), each
source s receives Yl(k) (l ∈ L(s)) and updates xs(k) defined
as follows:

xs(k) :=

xs(k − 1)− 1

2α

 ∑
l∈L(s)

Yl(k)− Zs(k)

Ms

0

,

where α > 0 and [z]ba := min{max{z, a}, b} (z, a, b ∈ R).
Source s transmits xs(k) to link l (l ∈ L(s)) and updates
ys(k) as follows:

ys(k) := argmin
ys∈Is

{
−us(ys) + Zs(k)ys + α(ys − ys(k − 1))2

}
.

(12)

Source s updates Rs(k + 1) and Zs(k + 1) by

Rs(k + 1) := max {−ys(k) + xs(k), Rs(k) + ys(k)− xs(k)} ,
Zs(k + 1) := Rs(k + 1) + ys(k)− xs(k).

When α ≥ (2S +
∑
s∈S ds)/2 is chosen, where ds (s ∈ S)

is the length of path of source s, the sequence (ȳ(k))k∈N :=
((ȳs(k))s∈S)k∈N generated by

ȳs(k) :=
1

k

k−1∑
t=0

ys(t) (s ∈ S), (13)

where ys(k) (s ∈ S, k ∈ N) is defined as in (12), converges to
a solution of Problem II.1 at the following rate [30, Theorem
3, (23)]: ∑

s∈S
us

(
1

k

k−1∑
t=0

ys(t)

)
≥ U? −O

(
1

k

)
(14)

(see Theorem III.1(ii) for the rate of convergence of Algo-
rithms 1 and 2). The DNFC algorithm defined by (13) can
work under the assumptions considered in the present paper.
We can see that Algorithms 1 and 2 use the average vi(k) of
xj(k) (j ∈ Ni(k), k ≥ 0) with the weight parameters wij(k)
defined by Assumption III.3, whereas the DNFC algorithm
uses the average ȳs(k) of (ys(t))

k−1
t=0 defined by (12).



7

IV. NUMERICAL EXPERIMENTS

We consider the network model in Figure 1, which is based
on [9, Figure 3.12]. As shown, the network comprises two
dense networks that are connected by a bridge, and the number
of nodes in each of the two networks is 20. The number of
sources in each of the two networks is 2 and each source
uses 3 links chosen randomly. The number of sources using
the bridge and the two networks is 6 and each source uses
7 links chosen randomly, where the graph with sources and
links in the network is modified to satisfy Assumption III.2.
The capacity of each link is randomly chosen from (0, 1). The
maximum allowed rate for each source is randomly chosen
from (0, 1).

The experiments were conducted on a Mac Pro (Late 2013)
computer whose processor is a 3 GHz 8-Core Intel Xeon E5
CPU and whose main memory is 32 GB 1866 MHz DDR3
RAM. The algorithms used in the experiments were coded in
Python 3 with the NumPy 1.14.3 and SciPy 1.1.0 packages.

Fig. 1: Network model based on [9, Figure 3.12]

Source parameter ts for s was randomly chosen from {0, 1}.
If ts = 0, then the utility function of source s is defined
by (5) with ws ∈ [2, 5) and as ∈ [5, 20) randomly chosen,
where bs := −wsas. If ts = 1, then the utility function of
source s is defined by (4) with ps := 1 and a randomly chosen
ws ∈ [15, 20). Obviously, Assumption II.2(i) is satisfied. We
define ul(x) := 0 (l ∈ L,x ∈ RS) to satisfy Assumption
II.2(ii). We assume that user i (i ∈ V := S ∪ L) satisfies
the standard assumption II.1, i.e., user i knows only its own
private information.

We verify how Algorithms 1 and 2 are affected by step sizes
(αk)k∈N. In the experiments, we used

αk := 1, 10−1, 10−2,

αk :=
1

k + 1
,

10−1

k + 1
,

10−2

k + 1
,

which satisfy the conditions in Theorems III.1 and III.2. The
weight parameters wij(k) (i ∈ V, j ∈ Ni(k))5 were set
to satisfy Assumptions III.1, III.2, and III.3. Accordingly,
Theorems III.1 and III.2 guarantee that, when both Algorithms
1 and 2 with diminishing step sizes are implemented, each
user in the network can find the optimal resource allocation.
Moreover, we compare the behaviors of Algorithms 1 and 2

5See https://github.com/iiduka-researches/misc/blob/master/misc/matrix.py
for the method of setting wij(k) (i ∈ V, j ∈ Ni(k)).

with that of the DNFC algorithm (13) [30, Algorithm 2] with
parameters satisfying the conditions in [30, Theorem 3].

Two performance measures were used in the experiments:
for xi(0) := 0 (i ∈ V) and all k ∈ N,

D(k) :=


∑
i∈V
‖x̄(k)− Pi(x̄(k))‖ (Algorithms 1 and 2)∑

i∈V
‖ȳ(k)− Pi(ȳ(k))‖ (DNFC),

U(k) :=


∑
s∈S

us(xs,s(k)) (Algorithms 1 and 2)∑
s∈S

us(ȳs(k)) (DNFC),

where xs(k) := (xs,t(k))t∈S ∈ RS (s ∈ S, k ∈ N)
is the point generated by one of Algorithms 1 and 2 and
x̄(k) := (xs,s(k))s∈S ∈ RS . If (D(k))k∈N converges to
0, then the algorithms converge to a point in the constraint
set

⋂
i∈V Fix(Pi) =

⋂
i∈V Ci = C. U(k) (k ∈ N) is

used to evaluate the objective function in Problem II.1. The
elapsed time for the algorithms used in the experiments was
obtained by using the timeit module in Python. Values
k = 102, 103, and 104 were used in the stopping condition for
each of the algorithms. We verified that the optimal value of
Problem II.1 is U? ≈ 19.61432375 by using Sequential Least
SQuares Programming (SLSQP) [14], which is a centralized
optimization solver in the SciPy 1.1.0 package.

Table I lists the elapsed time and values of D(k) and U(k)
(k = 102, 103) for the DNFC algorithm (13) [30, Algorithm 2]
and Algorithms 1 and 2. It is necessary to verify whether the
algorithms converge quickly to a point in C (i.e., D(k) ≈ 0)
because the set C is the constraint set in the NUM problem.
First, we compare the values of D(k) (k = 102, 103) for
Algorithm 1 with the ones for Algorithm 2. Table I shows that,
when the step size was fixed, Algorithms 1 and 2 had almost
the same behaviors. Algorithms 1 and 2 with diminishing step
sizes satisfied D(103) ≈ 0, whereas Algorithms 1 and 2 with
constant step sizes satisfied D(k) > 1.7 (k = 102, 103). The
elapsed time of Algorithm 1 was almost the same as that
of Algorithm 2. From the above discussion, Algorithms 1
and 2 with diminishing step sizes should be used to solve
Problem II.1. This is supported by the convergence analyses
of Algorithms 1 and 2 (Theorems III.1 and III.2) guaranteeing
that Algorithms 1 and 2 using a diminishing step size converge
to a solution of Problem II.1. Meanwhile, Table I shows that,
although the DNFC algorithm required much time, (D(k))1000k=0

generated by the DNFC algorithm converged to 0. Hence,
we can see that the DNFC algorithm performed better than
Algorithms 1 and 2 with constant step sizes.

Next, we compare the values of U(k) (k = 102, 103) for
the algorithms in the experiments. Table I indicates that the
DNFC algorithm converged to a solution of Problem II.1, as
promised in [30, Theorem 3]. Similarly, Algorithms 1 and 2
with αk = 1/(k + 1), 10−1/(k + 1) converged to a solution
of Problem II.1, as promised in Theorems III.1 and III.2. In
addition, U(103) (≈ 4) generated by either of Algorithms 1
and 2 with αk = 10−2/(k + 1) was less than U?, whereas
they converged to a point in C faster than other algorithms.
Algorithms 1 and 2 with constant step sizes had U(103) > 30



8

TABLE I: Elapsed time and values of D(k) and U(k) (k =
102, 103) for the DNFC algorithm, and Algorithms 1 and 2

(a) k = 102

Algorithm Time [s] D(102) U(102)

DNFC [30] 0.91254 32.38765 95.30908
Alg. 1 (αk = 1) 0.16692 6.70352 42.78859
Alg. 2 (αk = 1) 0.16309 6.70352 42.78859
Alg. 1 (αk = 10−1) 0.17012 6.37677 42.43657
Alg. 2 (αk = 10−1) 0.16600 6.37677 42.43657
Alg. 1 (αk = 10−2) 0.16092 1.89796 33.34397
Alg. 2 (αk = 10−2) 0.15328 1.93210 33.56496
Alg. 1 (αk = 1/(k + 1)) 0.16306 2.10725 33.79944
Alg. 2 (αk = 1/(k + 1)) 0.15987 2.14690 34.03348
Alg. 1 (αk = 10−1/(k + 1)) 0.15510 0.17539 18.21854
Alg. 2 (αk = 10−1/(k + 1)) 0.14941 0.18222 18.46435
Alg. 1 (αk = 10−2/(k + 1)) 0.14947 0.00793 4.93398
Alg. 2 (αk = 10−2/(k + 1)) 0.14553 0.00796 5.01410

(b) k = 103

Algorithm Time [s] D(103) U(103)

DNFC [30] 10.66114 0.49226 17.88063
Alg. 1 (αk = 1) 1.63952 6.70352 42.78859
Alg. 2 (αk = 1) 1.60649 6.70352 42.78859
Alg. 1 (αk = 10−1) 1.71241 6.37677 42.43657
Alg. 2 (αk = 10−1) 1.66357 6.37677 42.43657
Alg. 1 (αk = 10−2) 1.60314 1.71861 32.98997
Alg. 2 (αk = 10−2) 1.55142 1.75692 33.21719
Alg. 1 (αk = 1/(k + 1)) 1.48479 0.34058 23.87111
Alg. 2 (αk = 1/(k + 1)) 1.45622 0.34550 23.91450
Alg. 1 (αk = 10−1/(k + 1)) 1.47941 0.02834 13.84689
Alg. 2 (αk = 10−1/(k + 1)) 1.44119 0.02800 13.93110
Alg. 1 (αk = 10−2/(k + 1)) 1.41824 0.00069 4.18878
Alg. 2 (αk = 10−2/(k + 1)) 1.40255 0.00069 4.23956

and D(103) > 1.7; i.e., they did not approximate a solution
to Problem II.1 until the stopping conditions were satisfied.

We next verify the behaviors of the sequences (D(k))1000k=0

and (U(k))1000k=0 generated by the algorithms in the experi-
ments. Figures 2–4 show the behaviors of the DNFC algorithm
and Algorithms 1 and 2 with constant step sizes. The sequence
(D(k))1000k=50 generated by the DNFC algorithm decreased and
the DNFC algorithm converged to a solution of Problem II.1,
as seen in Table I. Meanwhile, these figures indicate that
Algorithms 1 and 2 with constant step sizes did not converge
to a point in C (see also Table I).

Figures 5–7 show the behaviors of the DNFC algorithm
and Algorithms 1 and 2 with diminishing step sizes. The
figures indicate that (D(k))1000k=0 generated by the DNFC
algorithm and Algorithms 1 and 2 converged to 0. In particular,
Algorithms 1 and 2 converged to a point in C faster than
the DNFC algorithm. Moreover, Figure 5 and Table I show
that Algorithms 1 and 2 with αk = 1/(k + 1) performed
better than the DNFC algorithm. Algorithms 1 and 2 with
αk = 10−1/(k + 1), 10−2/(k + 1) converged to a point in C
faster than Algorithms 1 and 2 with αk = 1/(k+1). However,
the value of U(103) generated by either of Algorithms 1 and

2 was less with αk = 10−1/(k + 1), 10−2/(k + 1) than with
αk = 1/(k + 1) (Table I and Figures 5–7). Accordingly,
we can see that Algorithms 1 and 2 performed better with
αk = 1/(k+ 1) than with αk = 10−1/(k+ 1), 10−2/(k+ 1).

We also verify whether Algorithms 1 and 2 with αk =
10−1/(k+1), 10−2/(k+1) approximate a solution to Problem
II.1 for a large enough iteration k. Tables I and II show that
Algorithms 1 and 2 with αk = 10−1/(k + 1), 10−2/(k + 1)
converged to a point in C and that they increased U(k) little
by little. Hence, we can see that, although Algorithms 1 and
2 required more time with αk = 10−1/(k+ 1), 10−2/(k+ 1)
than with αk = 1/(k + 1), Algorithms 1 and 2 with αk =
10−1/(k+1), 10−2/(k+1) converged to a solution of Problem
II.1.

TABLE II: Elapsed time and values of D(104) and U(104) for
Algorithms 1 and 2 with αk = 10−1/(k + 1), 10−2/(k + 1)

Algorithm Time [s] D(104) U(104)

Alg. 1 (αk = 10−1/(k + 1)) 14.19869 0.00247 15.17346
Alg. 2 (αk = 10−1/(k + 1)) 13.73651 0.00260 15.25161
Alg. 1 (αk = 10−2/(k + 1)) 13.75821 0.00007 4.79908
Alg. 2 (αk = 10−2/(k + 1)) 13.26862 0.00007 4.84906

From the above discussion, we can conclude that the per-
formances of Algorithms 1 and 2 depend on step size. The
comparisons of the DNFC algorithm with Algorithms 1 and 2
showed that the DNFC algorithm performs better than Algo-
rithms 1 and 2 with constant step sizes, whereas Algorithms
1 and 2 with diminishing step sizes perform better than the
DNFC algorithm. In particular, Algorithms 1 and 2 with small
diminishing step sizes (e.g., αk = 10−1/(k+1), 10−2/(k+1))
converge to a point in the absolute constraint set quickly, and
Algorithms 1 and 2 with large diminishing step sizes (e.g.,
αk = 1/(k + 1)) approximate a solution to Problem II.1
quickly.

0 200 400 600 800 1000
Number of iterations

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 2: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 1 (Algorithm 1 had almost
the same behavior as Algorithm 2)

V. CONCLUSION

This paper proposed two distributed optimization algo-
rithms, a projected proximal algorithm and a projected sub-
gradient algorithm, for solving the NUM problem under the
constraint that each source has its own nonsmooth concave
utility function and each link has its own capacity constraint.
The algorithms are each guaranteed to converge to the solution



9

0 200 400 600 800 1000
Number of iterations

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 3: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 10−1 (Algorithm 1 had
almost the same behavior as Algorithm 2)

0 200 400 600 800 1000
Number of iterations

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 4: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 10−2 (Algorithm 1 had
almost the same behavior as Algorithm 2)

0 200 400 600 800 1000
Number of iterations

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 5: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 1/(k + 1) (Algorithm 1
had almost the same behavior as Algorithm 2)

0 200 400 600 800 1000
Number of iterations

10−1

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 6: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 10−1/(k+ 1) (Algorithm
1 had almost the same behavior as Algorithm 2)

0 200 400 600 800 1000
Number of iterations

10−3

10−2

10−1

100

101

102

D
(k
)

DNFC
Alg.1
Alg.2

(a) Evaluation of D(k)

0 200 400 600 800 1000
Number of iterations

101

102

U
(k
)

DNFC
Alg.1
Alg.2

(b) Evaluation of U(k)

Fig. 7: Behaviors of D(k) and U(k) for the DNFC algorithm,
and Algorithms 1 and 2 with αk := 10−2/(k+ 1) (Algorithm
1 had almost the same behavior as Algorithm 2)

of the NUM problem under certain assumptions. Numerical
experiments were performed to demonstrate the performances
of the two algorithms and the existing DNFC algorithm [30]
for the NUM problem. The numerical results indicated that the
algorithms were able to find the optimal resource allocation. In
particular, the proposed algorithms with diminishing step sizes
are well suited for finding the solution to the NUM problem.

APPENDIX A
PROOFS OF THEOREMS III.1 AND III.2

Let us consider the following algorithm [11, Algorithm 3.1].
User i receives xj(k) from its neighboring users j ∈ Ni(k)
and computes xi(k + 1) defined as follows:

vi(k) :=
∑

j∈Ni(k)

wij(k)xj(k),

xi(k + 1) := Pi,ξ (Proxαkfi(vi(k))) ,

(15)

where fi := −ui (i ∈ V), Pi,ξ (i ∈ V) is the metric projection
onto a constraint set Ci,ξ randomly selected from {Ci,j}Jij=1,
and Ci :=

⋂Ji
j=1 Ci,j . Since Problem II.1 is considered under

the special case that Ci = Ci,j for all i ∈ V and all j =
1, 2, . . . , Ji, we consider algorithm (15) when Pi,j := Pi (i ∈
V, j = 1, 2, . . . , Ji), which is the same as in Algorithm 1.
Accordingly, we can apply the results in [11] for algorithm
(15) to Algorithm 1.

We first give a lemma.

Lemma A.1 Suppose that Assumptions II.1, II.2, and III.3
hold and define D̂(k) :=

∑
i∈V d(xi(k), C)2, D̄(k) :=∑

i∈V ‖xi(k) − x?‖2, zi(k) := PC(vi(k)), and z(k) :=∑
i∈V fi(zi(k)) for all k ∈ N, where x? ∈ C is a solution

to Problem II.1. Then, there exist N1 ∈ (0, 1) and Ni > 0
(i = 2, 3) such that

D̂(k + 1) ≤ (1−N1)D̂(k) +N2α
2
k, (16)

D̄(k + 1) ≤ D̄(k)− 2αk (z(k)− f?) +N3α
2
k, (17)

where f := −U , U? is the optimal value of Problem II.1, and
f? := −U?.

Proof: We prove Lemma A.1 by referring to the results
in [11]. Assumption II.2 (the Lipschitz continuity of ui (i ∈
V)) ensures that, for all i ∈ V , there exists Mi ∈ R such
that sup{‖gi‖ : x ∈ Ci, gi ∈ ∂(−ui)(x)} ≤ Mi [5, Theorem
6.2.2, Corollary 6.1.2, and Exercise 6.1.9(c)]. This, together



10

with Assumptions II.1 and II.2, implies that (A1)–(A3) in [11]
hold. Since the assumptions in Lemmas 3.1 and 3.2 in [11] are
satisfied, the inequalities in [11, p.42] hold, i.e., there exist6

c > 1/6 and d > 0 such that, for all i ∈ V and all k ∈ N,

d(xi(k + 1), C)2 ≤ d(vi(k), C)2 − 1

6c
d (vi(k), C)

2
+ dα2

k.

The convexity of d(·, C)2 guarantees that d(vi(k), C)2 ≤∑
j∈V wij(k)d (xj(k), C)

2. Accordingly, Assumption III.3
leads to (16).

Since C is compact, there exists a solution of Problem II.1
[1, Corollary 8.31, Proposition 11.14]. The assumptions in
Lemma A.1 and [11, Lemma 3.1] ensure that, for all i ∈ V
and all k ∈ N,

‖xi(k + 1)− x?‖2 ≤ ‖vi(k)− x?‖2 − 1

6c
d(vi(k), C)2 + dα2

k

− 2αk(fi(zi(k))− fi(x?)) (18)

≤ ‖vi(k)− x?‖2 + dα2
k

− 2αk(fi(zi(k))− fi(x?)).

An argument similar to the one for obtaining (16) implies (17).
This completes the proof. 2

Next, we prove Theorem III.1(i).
Proof of Theorem III.1(i): We prove that there exists M1 > 0

such that

lim inf
k→+∞

D̂(k) ≤M1α
2. (19)

To show that N1 lim infk→+∞ D̂(k) ≤ N2α
2, we assume

that the assertion does not hold, i.e., N1 lim infk→+∞ D̂(k) >
N2α

2. Then there exists δ > 0 such that

N1 lim inf
k→+∞

D̂(k) > N2α
2 + 2δ.

The definition of the limit inferior of D̂(k) means that there
exists k0 ∈ N such that, for all k ≥ k0,

N1 lim inf
k→+∞

D̂(k)− δ ≤ N1D̂(k).

Accordingly, for all k ≥ k0,

N1D̂(k) > N2α
2 + δ.

Hence, (16) guarantees that, for all k ≥ k0,

D̂(k + 1) ≤ D̂(k)− δ ≤ D̂(k0)− δ(k + 1− k0),

which is a contradiction since the right-hand side of the
above inequality approaches minus infinity when k diverges.
Therefore, N1 lim infk→+∞ D̂(k) ≤ N2α

2, i.e., (19) holds.
We show that, for all ε > 0,

2α

(
lim inf
k→+∞

z(k)− f?
)
≤ N3α

2 + ε. (20)

Here, let us assume that, for all ε > 0, (20) does not hold, i.e.,
there exists ε0 > 0 such that

2α

(
lim inf
k→+∞

z(k)− f?
)
> N3α

2 + ε0.

6From [16, p.223] (see also Assumption 2.5 in [11]) and the definition of
Ci (i ∈ V), we can set a large number c > 0 such that d(vi(k), C)2 ≤
cd(vi(k), Ci)

2 (i ∈ V, k ∈ N).

The definition of the limit inferior of z(k) guarantees that
there exists k1 ∈ N such that, for all k ≥ k1,

2α

(
lim inf
k→+∞

z(k)− f?
)
− 1

2
ε0 ≤ 2α (z(k)− f?) ,

which implies that, for all k ≥ k1,

2α (z(k)− f?) > N3α
2 +

1

2
ε0.

Accordingly, from (17), for all k ≥ k1,

D̄(k + 1) ≤ D̄(k)− 1

2
ε0 ≤ D̄(k0)− 1

2
ε0(k + 1− k1),

which leads to a contradiction since the right-hand side of the
above inequality approaches minus infinity when k diverges.
Therefore, (20) holds for all ε > 0. Since ε > 0 is arbitrary,
we have

2α

(
lim inf
k→+∞

z(k)− f?
)
≤ N3α

2,

which implies that

lim inf
k→+∞

z(k)− f? ≤ N3

2
α.

This completes the proof of Theorem III.1(i). 2

Finally, we prove Theorem III.1(ii).
Proof of Theorem III.1(ii): Theorem 3.1 in [11] guarantees

that, under Assumptions (A1)–(A3) in [11], Assumption 2.2
in [11] (which is the same as Assumption III.2 in the present
paper), and Assumption 2.3 in [11] (which is the same as As-
sumption III.3 in the present paper), the sequence (xi(k))k∈N
(i ∈ V) generated by algorithm (15) with Pi = Pi,j
(i ∈ V, j = 1, 2, . . . , Ji) (i.e., Algorithm 1) converges to a
solution of Problem II.1.

Summing (16) from k = 1 to k = K ∈ N ensures that

N1

K∑
k=1

D̂(k) ≤ D̂(1)− D̂(K + 1) +N2

K∑
k=1

α2
k,

which, together with
∑+∞
k=1 α

2
k < +∞ and the convexity of

d(·, C)2, implies that there exists N4 > 0 such that

∑
i∈V

d

(
1

K

K∑
k=1

xi(k), C

)2

≤ 1

K

K∑
k=1

D̂(k) ≤ N4

K
.

Accordingly, (7) holds.
Inequality (18) and the assumption of the existence of N5 >

0 such that N5

∑
i∈V ‖vi(k) − x?‖2 ≤

∑
i∈V d(vi(k), C)2

(k ∈ N), together with Assumption III.3, imply that there
exists c > N5/6 such that

D̄(k + 1) ≤ (1− p)D̄(k)− 2αk(z(k)− f?) +N3α
2
k,

where p := N5/(6c) and N3 := dV . In the case where αk ∈
(0, 1] (k ∈ N), for all k ∈ N,

z(k)− f? ≤ 1− pαk
2αk

D̄(k)− 1

2αk
D̄(k + 1) +

N3

2
αk. (21)

(a) Let αk = 1/(pk) (k ∈ N). Inequality (21) implies that, for
all k ∈ N,

z(k)− f? ≤ p(k − 1)

2
D̄(k)− pk

2
D̄(k + 1) +

N3

2pk
.



11

Summing the above inequality from k = 1 to k = K ∈ N
ensures that

1

K

K∑
k=1

z(k)− f? ≤ −p
2
D̄(K + 1) +

N3

2p

1 + logK

K
,

where
∑K
k=1(1/k) ≤ 1 + logK. The convexity of fi (i ∈ V)

thus guarantees that∑
i∈V

fi

(
1

K

K∑
k=1

zi(k)

)
≤ f? − p

2
D̄(K + 1) +

N3

2p

1 + logK

K

≤ f? +
N3

2p

1 + logK

K
.

(b) Let αk = 2/(p(k+ 1)) (k ∈ N). From (21), for all k ∈ N,

k(z(k)− f?) ≤ p(k − 1)k

4
D̄(k)− pk(k + 1)

4
D̄(k + 1) +N6,

where (N3k)/(p(k+ 1)) ≤ N3/p =: N6. Summing the above
inequality from k = 1 to k = K ∈ N ensures that

2

K(K + 1)

K∑
k=1

kz(k)− f? ≤ −p
2
D̄(K + 1) +

2N6

K + 1
,

which, together with the convexity of fi (i ∈ V), implies that∑
i∈V

fi

(
2

K(K + 1)

K∑
k=1

kzi(k)

)
≤ f? − p

2
D̄(K + 1) +

2N6

K

≤ f? +
2N6

K
.

This completes the proof of Theorem III.1(ii). 2

The results in [11, Section 4], together with the discussion
in Appendix A, imply Theorem III.2. Therefore, we omit the
proof of Theorem III.2.

ACKNOWLEDGMENT

I am sincerely grateful to the associate editor, Tansu Alpcan,
and the three anonymous reviewers for helping me improve
the original manuscript. I also would like to thank Kazuhiro
Hishinuma for his input on the numerical examples.

REFERENCES

[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, Springer, New York, 2011.

[2] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, An O(1/k) gradient
method for network resource allocation problems, IEEE Trans. Control.
Network Systems, vol. 1, no. 1, pp. 64–73, 2014.

[3] D. P. Bertsekas, Incremental proximal methods for large scale convex
optimization, Math. Program. vol. 129, no. 2, pp. 163–195, 2011.

[4] D. P. Bertsekas and R. Gallager, Data Networks, Prentice Hall, New
Jersey, 1987.

[5] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Opti-
mization: Theory and Examples, Springer, New York, 2006.

[6] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge
University Press, Cambridge, 1991.

[7] P. L. Combettes and J. C. Pesquet, A Douglas-Rachford splitting approach
to nonsmooth convex variational signal recovery, IEEE J. Sel. Top. Signal
Process. vol. 1, no. 4, pp. 564–574, 2007.

[8] P. L. Combettes and J. C. Pesquet, Proximal splitting methods in signal
processing, in: H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser,
D. R. Luke, H. Wolkowicz (Eds.), Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, Springer, New York, pp. 185–212,
2011.

[9] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning
about a highly connected world, Cambridge University Press, Cambridge,
2010.

[10] H. Iiduka, Iterative algorithm for triple-hierarchical constrained non-
convex optimization problem and its application to network bandwidth
allocation, SIAM J. Optim., vol. 22, no. 3, pp. 862–878, 2012.

[11] H. Iiduka, Almost sure convergence of random projected proximal and
subgradient algorithms for distributed nonsmooth convex optimization,
Optimization, vol. 66, no. 1, pp. 35–59, 2017.

[12] H. Iiduka and M. Uchida, Fixed point optimization algorithms for
network bandwidth allocation problems with compoundable constraints,
IEEE Communications Letters, vol. 15, no. 6, pp. 596–598, 2011.

[13] F. Kelly, Charging and rate control for elastic traffic, European Trans.
Telecommun. vol. 8, no. 1, pp. 33–37, 1997.

[14] D. Kraft, A software package for sequential quadratic programming,
Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center–Institute
for Flight Mechanics, Koln, Germany, 1988.

[15] D. Knuth, Big Omicron and big Omega and big Theta, ACM SIGACT
News, vol. 8, no. 2, pp. 18–24, 1976.

[16] S. Lee and A. Nedić, Distributed random projection algorithm for convex
optimization, IEEE J. Sel. Top. Signal Process. vol. 7, no. 2, pp. 221–229,
2013.

[17] S. H. Low and D. E. Lapsley, Optimization flow control–I: Basic
algorithm and convergence, IEEE/ACM Trans. Networking, vol. 7, no.
6, pp. 861–874, 1999.

[18] J. Marašević, C. Stein, and G. Zussman, A fast distributed stateless
algorithm for α-fair packing problems, Proc. ICALP’16, 2016.

[19] G. J. Minty, A theorem on maximal monotonic sets in Hilbert space, J.
Math. Anal. Appl. vol. 11, pp. 434–439, 1965.

[20] J. Mo and J. Walrand, Fair end-to-end window-based congestion control,
IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, 2000.

[21] J. J. Moreau, Fonctions convexes duales et points proximaux dans un
espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math. vol. 255, pp. 2897–
2899, 1962.

[22] A. Nedić and D. P. Bertsekas, Incremental subgradient methods for
nondifferentiable optimization, SIAM J. Optim. vol. 12, no. 1, pp. 109–
138, 2001.

[23] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate
analysis for dual subgradient methods, SIAM J. Optim. vol. 19, no. 4,
pp. 1757–1780, 2009.

[24] A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point prob-
lems, J. Optim. Theory Appl. vol. 142, no. 1, pp. 205–228, 2009.

[25] N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[26] R. Srikant, The Mathematics of Internet Congestion Control, Birkhäuser,
Boston, 2004.

[27] E. Wei, A. Ozdaglar, and A. Jadbabaie, A distributed Newton method
for network utility maximization–I: Algorithm, IEEE Trans. Automat.
Control, vol. 58, no. 9, pp. 2162–2175, 2013.

[28] E. Wei, A. Ozdaglar, and A. Jadbabaie, A distributed Newton method for
network utility maximization–Part II: Convergence, IEEE Trans. Automat.
Control, vol. 58, no. 9, pp. 2176–2188, 2013.

[29] L. Xiao and S. Boyd, Fast linear iterations for distributed averaging,
Syst. Control Lett. vol. 53, no. pp. 65–78, 2004.

[30] H. Yu and M. J. Neely, A simple parallel algorithm with an O(1/t)
convergence rate for general convex programs, SIAM J. Optim. vol. 27,
no. 2, pp. 759–783, 2017.

Hideaki Iiduka received the Ph.D. degree from
Tokyo Institute of Technology, Tokyo, Japan, in
2005. From 2005 to 2007, he was a Research
Assistant in the Department of Mathematical and
Computing Sciences, Tokyo Institute of Technology,
Tokyo, Japan. From 2007 to 2008, he was a Research
Fellow (PD) of the Japan Society for the Promotion
of Science. From October 2008 to March 2013, he
was an Associate Professor in the Network Design
Research Center, Kyushu Institute of Technology,
Tokyo, Japan. Since April 2013, he has been an

Associate Professor in the Department of Computer Science, School of
Science and Technology, Meiji University, Kanagawa, Japan. His research
field is optimization theory and its applications to mathematical information
science. He is a member of SIAM and MOS.


